/* * Software License Agreement (BSD License) * * Copyright (c) 2010, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_COMMON_IMPL_H_ #define PCL_COMMON_IMPL_H_ #include #include #include // for FLT_MAX ////////////////////////////////////////////////////////////////////////////////////////////// inline double pcl::getAngle3D (const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree) { // Compute the actual angle double rad = v1.normalized ().dot (v2.normalized ()); if (rad < -1.0) rad = -1.0; else if (rad > 1.0) rad = 1.0; return (in_degree ? std::acos (rad) * 180.0 / M_PI : std::acos (rad)); } inline double pcl::getAngle3D (const Eigen::Vector3f &v1, const Eigen::Vector3f &v2, const bool in_degree) { // Compute the actual angle double rad = v1.normalized ().dot (v2.normalized ()); if (rad < -1.0) rad = -1.0; else if (rad > 1.0) rad = 1.0; return (in_degree ? std::acos (rad) * 180.0 / M_PI : std::acos (rad)); } #ifdef __SSE__ inline __m128 pcl::acos_SSE (const __m128 &x) { /* This python code generates the coefficients: import math, numpy, scipy.optimize def get_error(S): err_sum=0.0 for x in numpy.arange(0.0, 1.0, 0.0025): if (S[3]+S[4]*x)<0.0: err_sum+=10.0 else: err_sum+=((S[0]+x*(S[1]+x*S[2]))*numpy.sqrt(S[3]+S[4]*x)+S[5]+x*(S[6]+x*S[7])-math.acos(x))**2.0 return err_sum/400.0 print(scipy.optimize.minimize(fun=get_error, x0=[1.57, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0], method='Nelder-Mead', options={'maxiter':42000, 'maxfev':42000, 'disp':True, 'xatol':1e-6, 'fatol':1e-6})) */ const __m128 mul_term = _mm_add_ps (_mm_set1_ps (1.59121552f), _mm_mul_ps (x, _mm_add_ps (_mm_set1_ps (-0.15461442f), _mm_mul_ps (x, _mm_set1_ps (0.05354897f))))); const __m128 add_term = _mm_add_ps (_mm_set1_ps (0.06681017f), _mm_mul_ps (x, _mm_add_ps (_mm_set1_ps (-0.09402311f), _mm_mul_ps (x, _mm_set1_ps (0.02708663f))))); return _mm_add_ps (_mm_mul_ps (mul_term, _mm_sqrt_ps (_mm_add_ps (_mm_set1_ps (0.89286965f), _mm_mul_ps (_mm_set1_ps (-0.89282669f), x)))), add_term); } inline __m128 pcl::getAcuteAngle3DSSE (const __m128 &x1, const __m128 &y1, const __m128 &z1, const __m128 &x2, const __m128 &y2, const __m128 &z2) { const __m128 dot_product = _mm_add_ps (_mm_add_ps (_mm_mul_ps (x1, x2), _mm_mul_ps (y1, y2)), _mm_mul_ps (z1, z2)); // The andnot-function realizes an abs-operation: the sign bit is removed // -0.0f (negative zero) means that all bits are 0, only the sign bit is 1 return acos_SSE (_mm_min_ps (_mm_set1_ps (1.0f), _mm_andnot_ps (_mm_set1_ps (-0.0f), dot_product))); } #endif // ifdef __SSE__ #ifdef __AVX__ inline __m256 pcl::acos_AVX (const __m256 &x) { const __m256 mul_term = _mm256_add_ps (_mm256_set1_ps (1.59121552f), _mm256_mul_ps (x, _mm256_add_ps (_mm256_set1_ps (-0.15461442f), _mm256_mul_ps (x, _mm256_set1_ps (0.05354897f))))); const __m256 add_term = _mm256_add_ps (_mm256_set1_ps (0.06681017f), _mm256_mul_ps (x, _mm256_add_ps (_mm256_set1_ps (-0.09402311f), _mm256_mul_ps (x, _mm256_set1_ps (0.02708663f))))); return _mm256_add_ps (_mm256_mul_ps (mul_term, _mm256_sqrt_ps (_mm256_add_ps (_mm256_set1_ps (0.89286965f), _mm256_mul_ps (_mm256_set1_ps (-0.89282669f), x)))), add_term); } inline __m256 pcl::getAcuteAngle3DAVX (const __m256 &x1, const __m256 &y1, const __m256 &z1, const __m256 &x2, const __m256 &y2, const __m256 &z2) { const __m256 dot_product = _mm256_add_ps (_mm256_add_ps (_mm256_mul_ps (x1, x2), _mm256_mul_ps (y1, y2)), _mm256_mul_ps (z1, z2)); // The andnot-function realizes an abs-operation: the sign bit is removed // -0.0f (negative zero) means that all bits are 0, only the sign bit is 1 return acos_AVX (_mm256_min_ps (_mm256_set1_ps (1.0f), _mm256_andnot_ps (_mm256_set1_ps (-0.0f), dot_product))); } #endif // ifdef __AVX__ ////////////////////////////////////////////////////////////////////////////////////////////// inline void pcl::getMeanStd (const std::vector &values, double &mean, double &stddev) { // throw an exception when the input array is empty if (values.empty ()) { PCL_THROW_EXCEPTION (BadArgumentException, "Input array must have at least 1 element."); } // when the array has only one element, mean is the number itself and standard dev is 0 if (values.size () == 1) { mean = values.at (0); stddev = 0; return; } double sum = 0, sq_sum = 0; for (const float &value : values) { sum += value; sq_sum += value * value; } mean = sum / static_cast(values.size ()); double variance = (sq_sum - sum * sum / static_cast(values.size ())) / (static_cast(values.size ()) - 1); stddev = sqrt (variance); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getPointsInBox (const pcl::PointCloud &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt, Indices &indices) { indices.resize (cloud.size ()); int l = 0; // If the data is dense, we don't need to check for NaN if (cloud.is_dense) { for (std::size_t i = 0; i < cloud.size (); ++i) { // Check if the point is inside bounds if (cloud[i].x < min_pt[0] || cloud[i].y < min_pt[1] || cloud[i].z < min_pt[2]) continue; if (cloud[i].x > max_pt[0] || cloud[i].y > max_pt[1] || cloud[i].z > max_pt[2]) continue; indices[l++] = int (i); } } // NaN or Inf values could exist => check for them else { for (std::size_t i = 0; i < cloud.size (); ++i) { // Check if the point is invalid if (!std::isfinite (cloud[i].x) || !std::isfinite (cloud[i].y) || !std::isfinite (cloud[i].z)) continue; // Check if the point is inside bounds if (cloud[i].x < min_pt[0] || cloud[i].y < min_pt[1] || cloud[i].z < min_pt[2]) continue; if (cloud[i].x > max_pt[0] || cloud[i].y > max_pt[1] || cloud[i].z > max_pt[2]) continue; indices[l++] = int (i); } } indices.resize (l); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMaxDistance (const pcl::PointCloud &cloud, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt) { float max_dist = -FLT_MAX; int max_idx = -1; float dist; const Eigen::Vector3f pivot_pt3 = pivot_pt.head<3> (); // If the data is dense, we don't need to check for NaN if (cloud.is_dense) { for (std::size_t i = 0; i < cloud.size (); ++i) { pcl::Vector3fMapConst pt = cloud[i].getVector3fMap (); dist = (pivot_pt3 - pt).norm (); if (dist > max_dist) { max_idx = int (i); max_dist = dist; } } } // NaN or Inf values could exist => check for them else { for (std::size_t i = 0; i < cloud.size (); ++i) { // Check if the point is invalid if (!std::isfinite (cloud[i].x) || !std::isfinite (cloud[i].y) || !std::isfinite (cloud[i].z)) continue; pcl::Vector3fMapConst pt = cloud[i].getVector3fMap (); dist = (pivot_pt3 - pt).norm (); if (dist > max_dist) { max_idx = int (i); max_dist = dist; } } } if(max_idx != -1) max_pt = cloud[max_idx].getVector4fMap (); else max_pt = Eigen::Vector4f(std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN()); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMaxDistance (const pcl::PointCloud &cloud, const Indices &indices, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt) { float max_dist = -FLT_MAX; int max_idx = -1; float dist; const Eigen::Vector3f pivot_pt3 = pivot_pt.head<3> (); // If the data is dense, we don't need to check for NaN if (cloud.is_dense) { for (std::size_t i = 0; i < indices.size (); ++i) { pcl::Vector3fMapConst pt = cloud[indices[i]].getVector3fMap (); dist = (pivot_pt3 - pt).norm (); if (dist > max_dist) { max_idx = static_cast (i); max_dist = dist; } } } // NaN or Inf values could exist => check for them else { for (std::size_t i = 0; i < indices.size (); ++i) { // Check if the point is invalid if (!std::isfinite (cloud[indices[i]].x) || !std::isfinite (cloud[indices[i]].y) || !std::isfinite (cloud[indices[i]].z)) continue; pcl::Vector3fMapConst pt = cloud[indices[i]].getVector3fMap (); dist = (pivot_pt3 - pt).norm (); if (dist > max_dist) { max_idx = static_cast (i); max_dist = dist; } } } if(max_idx != -1) max_pt = cloud[indices[max_idx]].getVector4fMap (); else max_pt = Eigen::Vector4f(std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN(),std::numeric_limits::quiet_NaN()); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMinMax3D (const pcl::PointCloud &cloud, PointT &min_pt, PointT &max_pt) { Eigen::Vector4f min_p, max_p; pcl::getMinMax3D (cloud, min_p, max_p); min_pt.x = min_p[0]; min_pt.y = min_p[1]; min_pt.z = min_p[2]; max_pt.x = max_p[0]; max_pt.y = max_p[1]; max_pt.z = max_p[2]; } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMinMax3D (const pcl::PointCloud &cloud, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) { min_pt.setConstant (FLT_MAX); max_pt.setConstant (-FLT_MAX); // If the data is dense, we don't need to check for NaN if (cloud.is_dense) { for (const auto& point: cloud.points) { const pcl::Vector4fMapConst pt = point.getVector4fMap (); min_pt = min_pt.cwiseMin (pt); max_pt = max_pt.cwiseMax (pt); } } // NaN or Inf values could exist => check for them else { for (const auto& point: cloud.points) { // Check if the point is invalid if (!std::isfinite (point.x) || !std::isfinite (point.y) || !std::isfinite (point.z)) continue; const pcl::Vector4fMapConst pt = point.getVector4fMap (); min_pt = min_pt.cwiseMin (pt); max_pt = max_pt.cwiseMax (pt); } } } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMinMax3D (const pcl::PointCloud &cloud, const pcl::PointIndices &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) { pcl::getMinMax3D (cloud, indices.indices, min_pt, max_pt); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMinMax3D (const pcl::PointCloud &cloud, const Indices &indices, Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt) { min_pt.setConstant (FLT_MAX); max_pt.setConstant (-FLT_MAX); // If the data is dense, we don't need to check for NaN if (cloud.is_dense) { for (const auto &index : indices) { const pcl::Vector4fMapConst pt = cloud[index].getVector4fMap (); min_pt = min_pt.cwiseMin (pt); max_pt = max_pt.cwiseMax (pt); } } // NaN or Inf values could exist => check for them else { for (const auto &index : indices) { // Check if the point is invalid if (!std::isfinite (cloud[index].x) || !std::isfinite (cloud[index].y) || !std::isfinite (cloud[index].z)) continue; const pcl::Vector4fMapConst pt = cloud[index].getVector4fMap (); min_pt = min_pt.cwiseMin (pt); max_pt = max_pt.cwiseMax (pt); } } } ////////////////////////////////////////////////////////////////////////////////////////////// template inline double pcl::getCircumcircleRadius (const PointT &pa, const PointT &pb, const PointT &pc) { Eigen::Vector4f p1 (pa.x, pa.y, pa.z, 0); Eigen::Vector4f p2 (pb.x, pb.y, pb.z, 0); Eigen::Vector4f p3 (pc.x, pc.y, pc.z, 0); double p2p1 = (p2 - p1).norm (), p3p2 = (p3 - p2).norm (), p1p3 = (p1 - p3).norm (); // Calculate the area of the triangle using Heron's formula // (http://en.wikipedia.org/wiki/Heron's_formula) double semiperimeter = (p2p1 + p3p2 + p1p3) / 2.0; double area = sqrt (semiperimeter * (semiperimeter - p2p1) * (semiperimeter - p3p2) * (semiperimeter - p1p3)); // Compute the radius of the circumscribed circle return ((p2p1 * p3p2 * p1p3) / (4.0 * area)); } ////////////////////////////////////////////////////////////////////////////////////////////// template inline void pcl::getMinMax (const PointT &histogram, int len, float &min_p, float &max_p) { min_p = FLT_MAX; max_p = -FLT_MAX; for (int i = 0; i < len; ++i) { min_p = (histogram[i] > min_p) ? min_p : histogram[i]; max_p = (histogram[i] < max_p) ? max_p : histogram[i]; } } ////////////////////////////////////////////////////////////////////////////////////////////// template inline float pcl::calculatePolygonArea (const pcl::PointCloud &polygon) { float area = 0.0f; int num_points = polygon.size (); Eigen::Vector3f va,vb,res; res(0) = res(1) = res(2) = 0.0f; for (int i = 0; i < num_points; ++i) { int j = (i + 1) % num_points; va = polygon[i].getVector3fMap (); vb = polygon[j].getVector3fMap (); res += va.cross (vb); } area = res.norm (); return (area*0.5); } #endif //#ifndef PCL_COMMON_IMPL_H_