/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #pragma once #if defined __GNUC__ # pragma GCC system_header #endif #include #include /** * \file common/geometry.h * Defines some geometrical functions and utility functions * \ingroup common */ /*@{*/ namespace pcl { namespace geometry { /** @return the euclidean distance between 2 points */ template inline float distance (const PointT& p1, const PointT& p2) { Eigen::Vector3f diff = p1.getVector3fMap () - p2.getVector3fMap (); return (diff.norm ()); } /** @return the squared euclidean distance between 2 points */ template inline float squaredDistance (const PointT& p1, const PointT& p2) { Eigen::Vector3f diff = p1.getVector3fMap () - p2.getVector3fMap (); return (diff.squaredNorm ()); } /** @return the point projection on a plane defined by its origin and normal vector * \param[in] point Point to be projected * \param[in] plane_origin The plane origin * \param[in] plane_normal The plane normal * \param[out] projected The returned projected point */ template inline void project (const PointT& point, const PointT &plane_origin, const NormalT& plane_normal, PointT& projected) { Eigen::Vector3f po = point - plane_origin; const Eigen::Vector3f normal = plane_normal.getVector3fMapConst (); float lambda = normal.dot(po); projected.getVector3fMap () = point.getVector3fMapConst () - (lambda * normal); } /** @return the point projection on a plane defined by its origin and normal vector * \param[in] point Point to be projected * \param[in] plane_origin The plane origin * \param[in] plane_normal The plane normal * \param[out] projected The returned projected point */ inline void project (const Eigen::Vector3f& point, const Eigen::Vector3f &plane_origin, const Eigen::Vector3f& plane_normal, Eigen::Vector3f& projected) { Eigen::Vector3f po = point - plane_origin; float lambda = plane_normal.dot(po); projected = point - (lambda * plane_normal); } /** \brief Given a plane defined by plane_origin and plane_normal, find the unit vector pointing from plane_origin to the projection of point on the plane. * * \param[in] point Point projected on the plane * \param[in] plane_origin The plane origin * \param[in] plane_normal The plane normal * \return unit vector pointing from plane_origin to the projection of point on the plane. * \ingroup geometry */ inline Eigen::Vector3f projectedAsUnitVector (Eigen::Vector3f const &point, Eigen::Vector3f const &plane_origin, Eigen::Vector3f const &plane_normal) { Eigen::Vector3f projection; project (point, plane_origin, plane_normal, projection); Eigen::Vector3f projected_as_unit_vector = projection - plane_origin; projected_as_unit_vector.normalize (); return projected_as_unit_vector; } /** \brief Define a random unit vector orthogonal to axis. * * \param[in] axis Axis * \return random unit vector orthogonal to axis * \ingroup geometry */ inline Eigen::Vector3f randomOrthogonalAxis (Eigen::Vector3f const &axis) { Eigen::Vector3f rand_ortho_axis; rand_ortho_axis.setRandom(); if (std::abs (axis.z ()) > 1E-8f) { rand_ortho_axis.z () = -(axis.x () * rand_ortho_axis.x () + axis.y () * rand_ortho_axis.y ()) / axis.z (); } else if (std::abs (axis.y ()) > 1E-8f) { rand_ortho_axis.y () = -(axis.x () * rand_ortho_axis.x () + axis.z () * rand_ortho_axis.z ()) / axis.y (); } else if (std::abs (axis.x ()) > 1E-8f) { rand_ortho_axis.x () = -(axis.y () * rand_ortho_axis.y () + axis.z () * rand_ortho_axis.z ()) / axis.x (); } else { PCL_WARN ("[pcl::randomOrthogonalAxis] provided axis has norm < 1E-8f\n"); } rand_ortho_axis.normalize (); return rand_ortho_axis; } } }