/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2009-2012, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #ifndef PCL_SURFACE_IMPL_BILATERAL_UPSAMPLING_H_ #define PCL_SURFACE_IMPL_BILATERAL_UPSAMPLING_H_ #include #include #include #include // for inverse ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::BilateralUpsampling::process (pcl::PointCloud &output) { // Copy the header output.header = input_->header; if (!initCompute ()) { output.width = output.height = 0; output.clear (); return; } if (input_->isOrganized () == false) { PCL_ERROR ("Input cloud is not organized.\n"); return; } // Invert projection matrix unprojection_matrix_ = projection_matrix_.inverse (); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) printf ("%f ", unprojection_matrix_(i, j)); printf ("\n"); } // Perform the actual surface reconstruction performProcessing (output); deinitCompute (); } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::BilateralUpsampling::performProcessing (PointCloudOut &output) { output.resize (input_->size ()); float nan = std::numeric_limits::quiet_NaN (); Eigen::MatrixXf val_exp_depth_matrix; Eigen::VectorXf val_exp_rgb_vector; computeDistances (val_exp_depth_matrix, val_exp_rgb_vector); for (int x = 0; x < static_cast (input_->width); ++x) for (int y = 0; y < static_cast (input_->height); ++y) { int start_window_x = std::max (x - window_size_, 0), start_window_y = std::max (y - window_size_, 0), end_window_x = std::min (x + window_size_, static_cast (input_->width)), end_window_y = std::min (y + window_size_, static_cast (input_->height)); float sum = 0.0f, norm_sum = 0.0f; for (int x_w = start_window_x; x_w < end_window_x; ++ x_w) for (int y_w = start_window_y; y_w < end_window_y; ++ y_w) { float val_exp_depth = val_exp_depth_matrix (static_cast (x - x_w + window_size_), static_cast (y - y_w + window_size_)); Eigen::VectorXf::Index d_color = static_cast ( std::abs ((*input_)[y_w * input_->width + x_w].r - (*input_)[y * input_->width + x].r) + std::abs ((*input_)[y_w * input_->width + x_w].g - (*input_)[y * input_->width + x].g) + std::abs ((*input_)[y_w * input_->width + x_w].b - (*input_)[y * input_->width + x].b)); float val_exp_rgb = val_exp_rgb_vector (d_color); if (std::isfinite ((*input_)[y_w*input_->width + x_w].z)) { sum += val_exp_depth * val_exp_rgb * (*input_)[y_w*input_->width + x_w].z; norm_sum += val_exp_depth * val_exp_rgb; } } output[y*input_->width + x].r = (*input_)[y*input_->width + x].r; output[y*input_->width + x].g = (*input_)[y*input_->width + x].g; output[y*input_->width + x].b = (*input_)[y*input_->width + x].b; if (norm_sum != 0.0f) { float depth = sum / norm_sum; Eigen::Vector3f pc (static_cast (x) * depth, static_cast (y) * depth, depth); Eigen::Vector3f pw (unprojection_matrix_ * pc); output[y*input_->width + x].x = pw[0]; output[y*input_->width + x].y = pw[1]; output[y*input_->width + x].z = pw[2]; } else { output[y*input_->width + x].x = nan; output[y*input_->width + x].y = nan; output[y*input_->width + x].z = nan; } } output.header = input_->header; output.width = input_->width; output.height = input_->height; } template void pcl::BilateralUpsampling::computeDistances (Eigen::MatrixXf &val_exp_depth, Eigen::VectorXf &val_exp_rgb) { val_exp_depth.resize (2*window_size_+1,2*window_size_+1); val_exp_rgb.resize (3*255+1); int j = 0; for (int dx = -window_size_; dx < window_size_+1; ++dx) { int i = 0; for (int dy = -window_size_; dy < window_size_+1; ++dy) { float val_exp = std::exp (- (dx*dx + dy*dy) / (2.0f * static_cast (sigma_depth_ * sigma_depth_))); val_exp_depth(i,j) = val_exp; i++; } j++; } for (int d_color = 0; d_color < 3*255+1; d_color++) { float val_exp = std::exp (- d_color * d_color / (2.0f * sigma_color_ * sigma_color_)); val_exp_rgb(d_color) = val_exp; } } #define PCL_INSTANTIATE_BilateralUpsampling(T,OutT) template class PCL_EXPORTS pcl::BilateralUpsampling; #endif /* PCL_SURFACE_IMPL_BILATERAL_UPSAMPLING_H_ */