/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "poisson_exceptions.h" ///////////// // OctNode // ///////////// namespace pcl { namespace poisson { template const int OctNode::DepthShift=5; template const int OctNode::OffsetShift=19; template const int OctNode::DepthMask=(1< const int OctNode::OffsetMask=(1< const int OctNode::OffsetShift1=DepthShift; template const int OctNode::OffsetShift2=OffsetShift1+OffsetShift; template const int OctNode::OffsetShift3=OffsetShift2+OffsetShift; template int OctNode::UseAlloc=0; template Allocator > OctNode::internalAllocator; template void OctNode::SetAllocator(int blockSize) { if(blockSize>0) { UseAlloc=1; internalAllocator.set(blockSize); } else{UseAlloc=0;} } template int OctNode::UseAllocator(void){return UseAlloc;} template OctNode::OctNode(void){ parent=children=NULL; d=off[0]=off[1]=off[2]=0; } template OctNode::~OctNode(void){ if(!UseAlloc){delete[] children;} parent=children=NULL; } template void OctNode::setFullDepth(int maxDepth){ if( maxDepth ) { if( !children ) initChildren(); for( int i=0 ; i<8 ; i++ ) children[i].setFullDepth( maxDepth-1 ); } } template int OctNode::initChildren(void){ int i,j,k; if(UseAlloc){children=internalAllocator.newElements(8);} else{ delete[] children; children=NULL; children=new OctNode[Cube::CORNERS]; } if(!children){ POISSON_THROW_EXCEPTION (pcl::poisson::PoissonBadInitException, "Failed to initialize OctNode children."); } int d,off[3]; depthAndOffset(d,off); for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ int idx=Cube::CornerIndex(i,j,k); children[idx].parent=this; children[idx].children=NULL; int off2[3]; off2[0]=(off[0]<<1)+i; off2[1]=(off[1]<<1)+j; off2[2]=(off[2]<<1)+k; Index(d+1,off2,children[idx].d,children[idx].off); } } } return 1; } template inline void OctNode::Index(int depth,const int offset[3],short& d,short off[3]){ d=short(depth); off[0]=short((1< inline void OctNode::depthAndOffset(int& depth,int offset[3]) const { depth=int(d); offset[0]=(int(off[0])+1)&(~(1< inline int OctNode::depth(void) const {return int(d);} template inline void OctNode::DepthAndOffset(const long long& index,int& depth,int offset[3]){ depth=int(index&DepthMask); offset[0]=(int((index>>OffsetShift1)&OffsetMask)+1)&(~(1<>OffsetShift2)&OffsetMask)+1)&(~(1<>OffsetShift3)&OffsetMask)+1)&(~(1< inline int OctNode::Depth(const long long& index){return int(index&DepthMask);} template void OctNode::centerAndWidth(Point3D& center,Real& width) const{ int depth,offset[3]; depth=int(d); offset[0]=(int(off[0])+1)&(~(1< bool OctNode< NodeData , Real >::isInside( Point3D< Real > p ) const { Point3D< Real > c; Real w; centerAndWidth( c , w ); w /= 2; return (c[0]-w) inline void OctNode::CenterAndWidth(const long long& index,Point3D& center,Real& width){ int depth,offset[3]; depth=index&DepthMask; offset[0]=(int((index>>OffsetShift1)&OffsetMask)+1)&(~(1<>OffsetShift2)&OffsetMask)+1)&(~(1<>OffsetShift3)&OffsetMask)+1)&(~(1< int OctNode::maxDepth(void) const{ if(!children){return 0;} else{ int c,d; for(int i=0;ic){c=d;} } return c+1; } } template int OctNode::nodes(void) const{ if(!children){return 1;} else{ int c=0; for(int i=0;i int OctNode::leaves(void) const{ if(!children){return 1;} else{ int c=0; for(int i=0;i int OctNode::maxDepthLeaves(int maxDepth) const{ if(depth()>maxDepth){return 0;} if(!children){return 1;} else{ int c=0; for(int i=0;i const OctNode* OctNode::root(void) const{ const OctNode* temp=this; while(temp->parent){temp=temp->parent;} return temp; } template const OctNode* OctNode::nextBranch( const OctNode* current ) const { if( !current->parent || current==this ) return NULL; if(current-current->parent->children==Cube::CORNERS-1) return nextBranch( current->parent ); else return current+1; } template OctNode* OctNode::nextBranch(OctNode* current){ if(!current->parent || current==this){return NULL;} if(current-current->parent->children==Cube::CORNERS-1){return nextBranch(current->parent);} else{return current+1;} } template< class NodeData , class Real > const OctNode< NodeData , Real >* OctNode< NodeData , Real >::prevBranch( const OctNode* current ) const { if( !current->parent || current==this ) return NULL; if( current-current->parent->children==0 ) return prevBranch( current->parent ); else return current-1; } template< class NodeData , class Real > OctNode< NodeData , Real >* OctNode< NodeData , Real >::prevBranch( OctNode* current ) { if( !current->parent || current==this ) return NULL; if( current-current->parent->children==0 ) return prevBranch( current->parent ); else return current-1; } template const OctNode* OctNode::nextLeaf(const OctNode* current) const{ if(!current){ const OctNode* temp=this; while(temp->children){temp=&temp->children[0];} return temp; } if(current->children){return current->nextLeaf();} const OctNode* temp=nextBranch(current); if(!temp){return NULL;} else{return temp->nextLeaf();} } template OctNode* OctNode::nextLeaf(OctNode* current){ if(!current){ OctNode* temp=this; while(temp->children){temp=&temp->children[0];} return temp; } if(current->children){return current->nextLeaf();} OctNode* temp=nextBranch(current); if(!temp){return NULL;} else{return temp->nextLeaf();} } template const OctNode* OctNode::nextNode( const OctNode* current ) const { if( !current ) return this; else if( current->children ) return ¤t->children[0]; else return nextBranch(current); } template OctNode* OctNode::nextNode( OctNode* current ) { if( !current ) return this; else if( current->children ) return ¤t->children[0]; else return nextBranch( current ); } template void OctNode::printRange(void) const{ Point3D center; Real width; centerAndWidth(center,width); for(int dim=0;dim void OctNode::AdjacencyCountFunction::Function(const OctNode* node1,const OctNode* node2){count++;} template template void OctNode::processNodeNodes(OctNode* node,NodeAdjacencyFunction* F,int processCurrent){ if(processCurrent){F->Function(this,node);} if(children){__processNodeNodes(node,F);} } template template void OctNode::processNodeFaces(OctNode* node,NodeAdjacencyFunction* F,int fIndex,int processCurrent){ if(processCurrent){F->Function(this,node);} if(children){ int c1,c2,c3,c4; Cube::FaceCorners(fIndex,c1,c2,c3,c4); __processNodeFaces(node,F,c1,c2,c3,c4); } } template template void OctNode::processNodeEdges(OctNode* node,NodeAdjacencyFunction* F,int eIndex,int processCurrent){ if(processCurrent){F->Function(this,node);} if(children){ int c1,c2; Cube::EdgeCorners(eIndex,c1,c2); __processNodeEdges(node,F,c1,c2); } } template template void OctNode::processNodeCorners(OctNode* node,NodeAdjacencyFunction* F,int cIndex,int processCurrent){ if(processCurrent){F->Function(this,node);} OctNode* temp=this; while(temp->children){ temp=&temp->children[cIndex]; F->Function(temp,node); } } template template void OctNode::__processNodeNodes(OctNode* node,NodeAdjacencyFunction* F){ F->Function(&children[0],node); F->Function(&children[1],node); F->Function(&children[2],node); F->Function(&children[3],node); F->Function(&children[4],node); F->Function(&children[5],node); F->Function(&children[6],node); F->Function(&children[7],node); if(children[0].children){children[0].__processNodeNodes(node,F);} if(children[1].children){children[1].__processNodeNodes(node,F);} if(children[2].children){children[2].__processNodeNodes(node,F);} if(children[3].children){children[3].__processNodeNodes(node,F);} if(children[4].children){children[4].__processNodeNodes(node,F);} if(children[5].children){children[5].__processNodeNodes(node,F);} if(children[6].children){children[6].__processNodeNodes(node,F);} if(children[7].children){children[7].__processNodeNodes(node,F);} } template template void OctNode::__processNodeEdges(OctNode* node,NodeAdjacencyFunction* F,int cIndex1,int cIndex2){ F->Function(&children[cIndex1],node); F->Function(&children[cIndex2],node); if(children[cIndex1].children){children[cIndex1].__processNodeEdges(node,F,cIndex1,cIndex2);} if(children[cIndex2].children){children[cIndex2].__processNodeEdges(node,F,cIndex1,cIndex2);} } template template void OctNode::__processNodeFaces(OctNode* node,NodeAdjacencyFunction* F,int cIndex1,int cIndex2,int cIndex3,int cIndex4){ F->Function(&children[cIndex1],node); F->Function(&children[cIndex2],node); F->Function(&children[cIndex3],node); F->Function(&children[cIndex4],node); if(children[cIndex1].children){children[cIndex1].__processNodeFaces(node,F,cIndex1,cIndex2,cIndex3,cIndex4);} if(children[cIndex2].children){children[cIndex2].__processNodeFaces(node,F,cIndex1,cIndex2,cIndex3,cIndex4);} if(children[cIndex3].children){children[cIndex3].__processNodeFaces(node,F,cIndex1,cIndex2,cIndex3,cIndex4);} if(children[cIndex4].children){children[cIndex4].__processNodeFaces(node,F,cIndex1,cIndex2,cIndex3,cIndex4);} } template template void OctNode::ProcessNodeAdjacentNodes(int maxDepth,OctNode* node1,int width1,OctNode* node2,int width2,NodeAdjacencyFunction* F,int processCurrent){ int c1[3],c2[3],w1,w2; node1->centerIndex(maxDepth+1,c1); node2->centerIndex(maxDepth+1,c2); w1=node1->width(maxDepth+1); w2=node2->width(maxDepth+1); ProcessNodeAdjacentNodes(c1[0]-c2[0],c1[1]-c2[1],c1[2]-c2[2],node1,(width1*w1)>>1,node2,(width2*w2)>>1,w2,F,processCurrent); } template template void OctNode::ProcessNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int width2, NodeAdjacencyFunction* F,int processCurrent){ if(!Overlap(dx,dy,dz,radius1+radius2)){return;} if(processCurrent){F->Function(node2,node1);} if(!node2->children){return;} __ProcessNodeAdjacentNodes(-dx,-dy,-dz,node1,radius1,node2,radius2,width2/2,F); } template template void OctNode::ProcessTerminatingNodeAdjacentNodes(int maxDepth,OctNode* node1,int width1,OctNode* node2,int width2,TerminatingNodeAdjacencyFunction* F,int processCurrent){ int c1[3],c2[3],w1,w2; node1->centerIndex(maxDepth+1,c1); node2->centerIndex(maxDepth+1,c2); w1=node1->width(maxDepth+1); w2=node2->width(maxDepth+1); ProcessTerminatingNodeAdjacentNodes(c1[0]-c2[0],c1[1]-c2[1],c1[2]-c2[2],node1,(width1*w1)>>1,node2,(width2*w2)>>1,w2,F,processCurrent); } template template void OctNode::ProcessTerminatingNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int width2, TerminatingNodeAdjacencyFunction* F,int processCurrent) { if(!Overlap(dx,dy,dz,radius1+radius2)){return;} if(processCurrent){F->Function(node2,node1);} if(!node2->children){return;} __ProcessTerminatingNodeAdjacentNodes(-dx,-dy,-dz,node1,radius1,node2,radius2,width2/2,F); } template template void OctNode::ProcessPointAdjacentNodes( int maxDepth , const int c1[3] , OctNode* node2 , int width2 , PointAdjacencyFunction* F , int processCurrent ) { int c2[3] , w2; node2->centerIndex( maxDepth+1 , c2 ); w2 = node2->width( maxDepth+1 ); ProcessPointAdjacentNodes( c1[0]-c2[0] , c1[1]-c2[1] , c1[2]-c2[2] , node2 , (width2*w2)>>1 , w2 , F , processCurrent ); } template template void OctNode::ProcessPointAdjacentNodes(int dx,int dy,int dz, OctNode* node2,int radius2,int width2, PointAdjacencyFunction* F,int processCurrent) { if( !Overlap(dx,dy,dz,radius2) ) return; if( processCurrent ) F->Function(node2); if( !node2->children ) return; __ProcessPointAdjacentNodes( -dx , -dy , -dz , node2 , radius2 , width2>>1 , F ); } template template void OctNode::ProcessFixedDepthNodeAdjacentNodes(int maxDepth, OctNode* node1,int width1, OctNode* node2,int width2, int depth,NodeAdjacencyFunction* F,int processCurrent) { int c1[3],c2[3],w1,w2; node1->centerIndex(maxDepth+1,c1); node2->centerIndex(maxDepth+1,c2); w1=node1->width(maxDepth+1); w2=node2->width(maxDepth+1); ProcessFixedDepthNodeAdjacentNodes(c1[0]-c2[0],c1[1]-c2[1],c1[2]-c2[2],node1,(width1*w1)>>1,node2,(width2*w2)>>1,w2,depth,F,processCurrent); } template template void OctNode::ProcessFixedDepthNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int width2, int depth,NodeAdjacencyFunction* F,int processCurrent) { int d=node2->depth(); if(d>depth){return;} if(!Overlap(dx,dy,dz,radius1+radius2)){return;} if(d==depth){if(processCurrent){F->Function(node2,node1);}} else{ if(!node2->children){return;} __ProcessFixedDepthNodeAdjacentNodes(-dx,-dy,-dz,node1,radius1,node2,radius2,width2/2,depth-1,F); } } template template void OctNode::ProcessMaxDepthNodeAdjacentNodes(int maxDepth, OctNode* node1,int width1, OctNode* node2,int width2, int depth,NodeAdjacencyFunction* F,int processCurrent) { int c1[3],c2[3],w1,w2; node1->centerIndex(maxDepth+1,c1); node2->centerIndex(maxDepth+1,c2); w1=node1->width(maxDepth+1); w2=node2->width(maxDepth+1); ProcessMaxDepthNodeAdjacentNodes(c1[0]-c2[0],c1[1]-c2[1],c1[2]-c2[2],node1,(width1*w1)>>1,node2,(width2*w2)>>1,w2,depth,F,processCurrent); } template template void OctNode::ProcessMaxDepthNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int width2, int depth,NodeAdjacencyFunction* F,int processCurrent) { int d=node2->depth(); if(d>depth){return;} if(!Overlap(dx,dy,dz,radius1+radius2)){return;} if(processCurrent){F->Function(node2,node1);} if(dchildren){__ProcessMaxDepthNodeAdjacentNodes(-dx,-dy,-dz,node1,radius1,node2,radius2,width2>>1,depth-1,F);} } template template void OctNode::__ProcessNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int cWidth2, NodeAdjacencyFunction* F) { int cWidth=cWidth2>>1; int radius=radius2>>1; int o=ChildOverlap(dx,dy,dz,radius1+radius,cWidth); if(o){ int dx1=dx-cWidth; int dx2=dx+cWidth; int dy1=dy-cWidth; int dy2=dy+cWidth; int dz1=dz-cWidth; int dz2=dz+cWidth; if(o& 1){F->Function(&node2->children[0],node1);if(node2->children[0].children){__ProcessNodeAdjacentNodes(dx1,dy1,dz1,node1,radius1,&node2->children[0],radius,cWidth,F);}} if(o& 2){F->Function(&node2->children[1],node1);if(node2->children[1].children){__ProcessNodeAdjacentNodes(dx2,dy1,dz1,node1,radius1,&node2->children[1],radius,cWidth,F);}} if(o& 4){F->Function(&node2->children[2],node1);if(node2->children[2].children){__ProcessNodeAdjacentNodes(dx1,dy2,dz1,node1,radius1,&node2->children[2],radius,cWidth,F);}} if(o& 8){F->Function(&node2->children[3],node1);if(node2->children[3].children){__ProcessNodeAdjacentNodes(dx2,dy2,dz1,node1,radius1,&node2->children[3],radius,cWidth,F);}} if(o& 16){F->Function(&node2->children[4],node1);if(node2->children[4].children){__ProcessNodeAdjacentNodes(dx1,dy1,dz2,node1,radius1,&node2->children[4],radius,cWidth,F);}} if(o& 32){F->Function(&node2->children[5],node1);if(node2->children[5].children){__ProcessNodeAdjacentNodes(dx2,dy1,dz2,node1,radius1,&node2->children[5],radius,cWidth,F);}} if(o& 64){F->Function(&node2->children[6],node1);if(node2->children[6].children){__ProcessNodeAdjacentNodes(dx1,dy2,dz2,node1,radius1,&node2->children[6],radius,cWidth,F);}} if(o&128){F->Function(&node2->children[7],node1);if(node2->children[7].children){__ProcessNodeAdjacentNodes(dx2,dy2,dz2,node1,radius1,&node2->children[7],radius,cWidth,F);}} } } template template void OctNode::__ProcessTerminatingNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int cWidth2, TerminatingNodeAdjacencyFunction* F) { int cWidth=cWidth2>>1; int radius=radius2>>1; int o=ChildOverlap(dx,dy,dz,radius1+radius,cWidth); if(o){ int dx1=dx-cWidth; int dx2=dx+cWidth; int dy1=dy-cWidth; int dy2=dy+cWidth; int dz1=dz-cWidth; int dz2=dz+cWidth; if(o& 1){if(F->Function(&node2->children[0],node1) && node2->children[0].children){__ProcessTerminatingNodeAdjacentNodes(dx1,dy1,dz1,node1,radius1,&node2->children[0],radius,cWidth,F);}} if(o& 2){if(F->Function(&node2->children[1],node1) && node2->children[1].children){__ProcessTerminatingNodeAdjacentNodes(dx2,dy1,dz1,node1,radius1,&node2->children[1],radius,cWidth,F);}} if(o& 4){if(F->Function(&node2->children[2],node1) && node2->children[2].children){__ProcessTerminatingNodeAdjacentNodes(dx1,dy2,dz1,node1,radius1,&node2->children[2],radius,cWidth,F);}} if(o& 8){if(F->Function(&node2->children[3],node1) && node2->children[3].children){__ProcessTerminatingNodeAdjacentNodes(dx2,dy2,dz1,node1,radius1,&node2->children[3],radius,cWidth,F);}} if(o& 16){if(F->Function(&node2->children[4],node1) && node2->children[4].children){__ProcessTerminatingNodeAdjacentNodes(dx1,dy1,dz2,node1,radius1,&node2->children[4],radius,cWidth,F);}} if(o& 32){if(F->Function(&node2->children[5],node1) && node2->children[5].children){__ProcessTerminatingNodeAdjacentNodes(dx2,dy1,dz2,node1,radius1,&node2->children[5],radius,cWidth,F);}} if(o& 64){if(F->Function(&node2->children[6],node1) && node2->children[6].children){__ProcessTerminatingNodeAdjacentNodes(dx1,dy2,dz2,node1,radius1,&node2->children[6],radius,cWidth,F);}} if(o&128){if(F->Function(&node2->children[7],node1) && node2->children[7].children){__ProcessTerminatingNodeAdjacentNodes(dx2,dy2,dz2,node1,radius1,&node2->children[7],radius,cWidth,F);}} } } template template void OctNode::__ProcessPointAdjacentNodes(int dx,int dy,int dz, OctNode* node2,int radius2,int cWidth2, PointAdjacencyFunction* F) { int cWidth=cWidth2>>1; int radius=radius2>>1; int o=ChildOverlap(dx,dy,dz,radius,cWidth); if( o ) { int dx1=dx-cWidth; int dx2=dx+cWidth; int dy1=dy-cWidth; int dy2=dy+cWidth; int dz1=dz-cWidth; int dz2=dz+cWidth; if(o& 1){F->Function(&node2->children[0]);if(node2->children[0].children){__ProcessPointAdjacentNodes(dx1,dy1,dz1,&node2->children[0],radius,cWidth,F);}} if(o& 2){F->Function(&node2->children[1]);if(node2->children[1].children){__ProcessPointAdjacentNodes(dx2,dy1,dz1,&node2->children[1],radius,cWidth,F);}} if(o& 4){F->Function(&node2->children[2]);if(node2->children[2].children){__ProcessPointAdjacentNodes(dx1,dy2,dz1,&node2->children[2],radius,cWidth,F);}} if(o& 8){F->Function(&node2->children[3]);if(node2->children[3].children){__ProcessPointAdjacentNodes(dx2,dy2,dz1,&node2->children[3],radius,cWidth,F);}} if(o& 16){F->Function(&node2->children[4]);if(node2->children[4].children){__ProcessPointAdjacentNodes(dx1,dy1,dz2,&node2->children[4],radius,cWidth,F);}} if(o& 32){F->Function(&node2->children[5]);if(node2->children[5].children){__ProcessPointAdjacentNodes(dx2,dy1,dz2,&node2->children[5],radius,cWidth,F);}} if(o& 64){F->Function(&node2->children[6]);if(node2->children[6].children){__ProcessPointAdjacentNodes(dx1,dy2,dz2,&node2->children[6],radius,cWidth,F);}} if(o&128){F->Function(&node2->children[7]);if(node2->children[7].children){__ProcessPointAdjacentNodes(dx2,dy2,dz2,&node2->children[7],radius,cWidth,F);}} } } template template void OctNode::__ProcessFixedDepthNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int cWidth2, int depth,NodeAdjacencyFunction* F) { int cWidth=cWidth2>>1; int radius=radius2>>1; int o=ChildOverlap(dx,dy,dz,radius1+radius,cWidth); if(o){ int dx1=dx-cWidth; int dx2=dx+cWidth; int dy1=dy-cWidth; int dy2=dy+cWidth; int dz1=dz-cWidth; int dz2=dz+cWidth; if(node2->depth()==depth){ if(o& 1){F->Function(&node2->children[0],node1);} if(o& 2){F->Function(&node2->children[1],node1);} if(o& 4){F->Function(&node2->children[2],node1);} if(o& 8){F->Function(&node2->children[3],node1);} if(o& 16){F->Function(&node2->children[4],node1);} if(o& 32){F->Function(&node2->children[5],node1);} if(o& 64){F->Function(&node2->children[6],node1);} if(o&128){F->Function(&node2->children[7],node1);} } else{ if(o& 1){if(node2->children[0].children){__ProcessFixedDepthNodeAdjacentNodes(dx1,dy1,dz1,node1,radius1,&node2->children[0],radius,cWidth,depth,F);}} if(o& 2){if(node2->children[1].children){__ProcessFixedDepthNodeAdjacentNodes(dx2,dy1,dz1,node1,radius1,&node2->children[1],radius,cWidth,depth,F);}} if(o& 4){if(node2->children[2].children){__ProcessFixedDepthNodeAdjacentNodes(dx1,dy2,dz1,node1,radius1,&node2->children[2],radius,cWidth,depth,F);}} if(o& 8){if(node2->children[3].children){__ProcessFixedDepthNodeAdjacentNodes(dx2,dy2,dz1,node1,radius1,&node2->children[3],radius,cWidth,depth,F);}} if(o& 16){if(node2->children[4].children){__ProcessFixedDepthNodeAdjacentNodes(dx1,dy1,dz2,node1,radius1,&node2->children[4],radius,cWidth,depth,F);}} if(o& 32){if(node2->children[5].children){__ProcessFixedDepthNodeAdjacentNodes(dx2,dy1,dz2,node1,radius1,&node2->children[5],radius,cWidth,depth,F);}} if(o& 64){if(node2->children[6].children){__ProcessFixedDepthNodeAdjacentNodes(dx1,dy2,dz2,node1,radius1,&node2->children[6],radius,cWidth,depth,F);}} if(o&128){if(node2->children[7].children){__ProcessFixedDepthNodeAdjacentNodes(dx2,dy2,dz2,node1,radius1,&node2->children[7],radius,cWidth,depth,F);}} } } } template template void OctNode::__ProcessMaxDepthNodeAdjacentNodes(int dx,int dy,int dz, OctNode* node1,int radius1, OctNode* node2,int radius2,int cWidth2, int depth,NodeAdjacencyFunction* F) { int cWidth=cWidth2>>1; int radius=radius2>>1; int o=ChildOverlap(dx,dy,dz,radius1+radius,cWidth); if(o){ int dx1=dx-cWidth; int dx2=dx+cWidth; int dy1=dy-cWidth; int dy2=dy+cWidth; int dz1=dz-cWidth; int dz2=dz+cWidth; if(node2->depth()<=depth){ if(o& 1){F->Function(&node2->children[0],node1);} if(o& 2){F->Function(&node2->children[1],node1);} if(o& 4){F->Function(&node2->children[2],node1);} if(o& 8){F->Function(&node2->children[3],node1);} if(o& 16){F->Function(&node2->children[4],node1);} if(o& 32){F->Function(&node2->children[5],node1);} if(o& 64){F->Function(&node2->children[6],node1);} if(o&128){F->Function(&node2->children[7],node1);} } if(node2->depth()children[0].children){__ProcessMaxDepthNodeAdjacentNodes(dx1,dy1,dz1,node1,radius1,&node2->children[0],radius,cWidth,depth,F);}} if(o& 2){if(node2->children[1].children){__ProcessMaxDepthNodeAdjacentNodes(dx2,dy1,dz1,node1,radius1,&node2->children[1],radius,cWidth,depth,F);}} if(o& 4){if(node2->children[2].children){__ProcessMaxDepthNodeAdjacentNodes(dx1,dy2,dz1,node1,radius1,&node2->children[2],radius,cWidth,depth,F);}} if(o& 8){if(node2->children[3].children){__ProcessMaxDepthNodeAdjacentNodes(dx2,dy2,dz1,node1,radius1,&node2->children[3],radius,cWidth,depth,F);}} if(o& 16){if(node2->children[4].children){__ProcessMaxDepthNodeAdjacentNodes(dx1,dy1,dz2,node1,radius1,&node2->children[4],radius,cWidth,depth,F);}} if(o& 32){if(node2->children[5].children){__ProcessMaxDepthNodeAdjacentNodes(dx2,dy1,dz2,node1,radius1,&node2->children[5],radius,cWidth,depth,F);}} if(o& 64){if(node2->children[6].children){__ProcessMaxDepthNodeAdjacentNodes(dx1,dy2,dz2,node1,radius1,&node2->children[6],radius,cWidth,depth,F);}} if(o&128){if(node2->children[7].children){__ProcessMaxDepthNodeAdjacentNodes(dx2,dy2,dz2,node1,radius1,&node2->children[7],radius,cWidth,depth,F);}} } } } template inline int OctNode::ChildOverlap(int dx,int dy,int dz,int d,int cRadius2) { int w1=d-cRadius2; int w2=d+cRadius2; int overlap=0; int test=0,test1=0; if(dx-w1){test =1;} if(dx-w2){test|=2;} if(!test){return 0;} if(dz-w1){test1 =test;} if(dz-w2){test1|=test<<4;} if(!test1){return 0;} if(dy-w1){overlap =test1;} if(dy-w2){overlap|=test1<<2;} return overlap; } template OctNode* OctNode::getNearestLeaf(const Point3D& p){ Point3D center; Real width; OctNode* temp; int cIndex; if(!children){return this;} centerAndWidth(center,width); temp=this; while(temp->children){ cIndex=CornerIndex(center,p); temp=&temp->children[cIndex]; width/=2; if(cIndex&1){center.coords[0]+=width/2;} else {center.coords[0]-=width/2;} if(cIndex&2){center.coords[1]+=width/2;} else {center.coords[1]-=width/2;} if(cIndex&4){center.coords[2]+=width/2;} else {center.coords[2]-=width/2;} } return temp; } template const OctNode* OctNode::getNearestLeaf(const Point3D& p) const{ int nearest; Real temp,dist2; if(!children){return this;} for(int i=0;i int OctNode::CommonEdge(const OctNode* node1,int eIndex1,const OctNode* node2,int eIndex2){ int o1,o2,i1,i2,j1,j2; Cube::FactorEdgeIndex(eIndex1,o1,i1,j1); Cube::FactorEdgeIndex(eIndex2,o2,i2,j2); if(o1!=o2){return 0;} int dir[2]; int idx1[2]; int idx2[2]; switch(o1){ case 0: dir[0]=1; dir[1]=2; break; case 1: dir[0]=0; dir[1]=2; break; case 2: dir[0]=0; dir[1]=1; break; }; int d1,d2,off1[3],off2[3]; node1->depthAndOffset(d1,off1); node2->depthAndOffset(d2,off2); idx1[0]=off1[dir[0]]+(1<d2){ idx2[0]<<=(d1-d2); idx2[1]<<=(d1-d2); } else{ idx1[0]<<=(d2-d1); idx1[1]<<=(d2-d1); } if(idx1[0]==idx2[0] && idx1[1]==idx2[1]){return 1;} else {return 0;} } template int OctNode::CornerIndex(const Point3D& center,const Point3D& p){ int cIndex=0; if(p.coords[0]>center.coords[0]){cIndex|=1;} if(p.coords[1]>center.coords[1]){cIndex|=2;} if(p.coords[2]>center.coords[2]){cIndex|=4;} return cIndex; } template template OctNode& OctNode::operator = (const OctNode& node){ int i; delete[] children; children=NULL; d=node.depth (); for(i=0;ioffset[i] = node.offset[i];} if(node.children){ initChildren(); for(i=0;i int OctNode::CompareForwardDepths(const void* v1,const void* v2){ return ((const OctNode*)v1)->depth-((const OctNode*)v2)->depth; } template< class NodeData , class Real > int OctNode< NodeData , Real >::CompareByDepthAndXYZ( const void* v1 , const void* v2 ) { const OctNode *n1 = (*(const OctNode< NodeData , Real >**)v1); const OctNode *n2 = (*(const OctNode< NodeData , Real >**)v2); if( n1->d!=n2->d ) return int(n1->d)-int(n2->d); else if( n1->off[0]!=n2->off[0] ) return int(n1->off[0]) - int(n2->off[0]); else if( n1->off[1]!=n2->off[1] ) return int(n1->off[1]) - int(n2->off[1]); else if( n1->off[2]!=n2->off[2] ) return int(n1->off[2]) - int(n2->off[2]); return 0; } long long _InterleaveBits( int p[3] ) { long long key = 0; long long _p[3] = {p[0],p[1],p[2]}; for( int i=0 ; i<31 ; i++ ) key |= ( ( _p[0] & (1ull< int OctNode::CompareByDepthAndZIndex( const void* v1 , const void* v2 ) { const OctNode* n1 = (*(const OctNode**)v1); const OctNode* n2 = (*(const OctNode**)v2); int d1 , off1[3] , d2 , off2[3]; n1->depthAndOffset( d1 , off1 ) , n2->depthAndOffset( d2 , off2 ); if ( d1>d2 ) return 1; else if( d1k2 ) return 1; else if( k1 int OctNode::CompareForwardPointerDepths( const void* v1 , const void* v2 ) { const OctNode* n1 = (*(const OctNode**)v1); const OctNode* n2 = (*(const OctNode**)v2); if(n1->d!=n2->d){return int(n1->d)-int(n2->d);} while( n1->parent!=n2->parent ) { n1=n1->parent; n2=n2->parent; } if(n1->off[0]!=n2->off[0]){return int(n1->off[0])-int(n2->off[0]);} if(n1->off[1]!=n2->off[1]){return int(n1->off[1])-int(n2->off[1]);} return int(n1->off[2])-int(n2->off[2]); return 0; } template int OctNode::CompareBackwardDepths(const void* v1,const void* v2){ return ((const OctNode*)v2)->depth-((const OctNode*)v1)->depth; } template int OctNode::CompareBackwardPointerDepths(const void* v1,const void* v2){ return (*(const OctNode**)v2)->depth()-(*(const OctNode**)v1)->depth(); } template inline int OctNode::Overlap2(const int &depth1,const int offSet1[DIMENSION],const Real& multiplier1,const int &depth2,const int offSet2[DIMENSION],const Real& multiplier2){ int d=depth2-depth1; Real w=multiplier2+multiplier1*(1<=w || fabs(Real(offSet2[1]-(offSet1[1]<=w || fabs(Real(offSet2[2]-(offSet1[2]<=w ){return 0;} return 1; } template inline int OctNode::Overlap(int c1,int c2,int c3,int dWidth){ if(c1>=dWidth || c1<=-dWidth || c2>=dWidth || c2<=-dWidth || c3>=dWidth || c3<=-dWidth){return 0;} else{return 1;} } template OctNode* OctNode::faceNeighbor(int faceIndex,int forceChildren){return __faceNeighbor(faceIndex>>1,faceIndex&1,forceChildren);} template const OctNode* OctNode::faceNeighbor(int faceIndex) const {return __faceNeighbor(faceIndex>>1,faceIndex&1);} template OctNode* OctNode::__faceNeighbor(int dir,int off,int forceChildren){ if(!parent){return NULL;} int pIndex=int(this-(parent->children)); pIndex^=(1<children[pIndex];} else{ OctNode* temp=parent->__faceNeighbor(dir,off,forceChildren); if(!temp){return NULL;} if(!temp->children){ if(forceChildren){temp->initChildren();} else{return temp;} } return &temp->children[pIndex]; } } template const OctNode* OctNode::__faceNeighbor(int dir,int off) const { if(!parent){return NULL;} int pIndex=int(this-(parent->children)); pIndex^=(1<children[pIndex];} else{ const OctNode* temp=parent->__faceNeighbor(dir,off); if(!temp || !temp->children){return temp;} else{return &temp->children[pIndex];} } } template OctNode* OctNode::edgeNeighbor(int edgeIndex,int forceChildren){ int idx[2],o,i[2]; Cube::FactorEdgeIndex(edgeIndex,o,i[0],i[1]); switch(o){ case 0: idx[0]=1; idx[1]=2; break; case 1: idx[0]=0; idx[1]=2; break; case 2: idx[0]=0; idx[1]=1; break; }; return __edgeNeighbor(o,i,idx,forceChildren); } template const OctNode* OctNode::edgeNeighbor(int edgeIndex) const { int idx[2],o,i[2]; Cube::FactorEdgeIndex(edgeIndex,o,i[0],i[1]); switch(o){ case 0: idx[0]=1; idx[1]=2; break; case 1: idx[0]=0; idx[1]=2; break; case 2: idx[0]=0; idx[1]=1; break; }; return __edgeNeighbor(o,i,idx); } template const OctNode* OctNode::__edgeNeighbor(int o,const int i[2],const int idx[2]) const{ if(!parent){return NULL;} int pIndex=int(this-(parent->children)); int aIndex,x[DIMENSION]; Cube::FactorCornerIndex(pIndex,x[0],x[1],x[2]); aIndex=(~((i[0] ^ x[idx[0]]) | ((i[1] ^ x[idx[1]])<<1))) & 3; pIndex^=(7 ^ (1<__faceNeighbor(idx[0],i[0]); if(!temp || !temp->children){return NULL;} else{return &temp->children[pIndex];} } else if(aIndex==2) { // I can get the neighbor from the parent's face adjacent neighbor const OctNode* temp=parent->__faceNeighbor(idx[1],i[1]); if(!temp || !temp->children){return NULL;} else{return &temp->children[pIndex];} } else if(aIndex==0) { // I can get the neighbor from the parent return &parent->children[pIndex]; } else if(aIndex==3) { // I can get the neighbor from the parent's edge adjacent neighbor const OctNode* temp=parent->__edgeNeighbor(o,i,idx); if(!temp || !temp->children){return temp;} else{return &temp->children[pIndex];} } else{return NULL;} } template OctNode* OctNode::__edgeNeighbor(int o,const int i[2],const int idx[2],int forceChildren){ if(!parent){return NULL;} int pIndex=int(this-(parent->children)); int aIndex,x[DIMENSION]; Cube::FactorCornerIndex(pIndex,x[0],x[1],x[2]); aIndex=(~((i[0] ^ x[idx[0]]) | ((i[1] ^ x[idx[1]])<<1))) & 3; pIndex^=(7 ^ (1<__faceNeighbor(idx[0],i[0],0); if(!temp || !temp->children){return NULL;} else{return &temp->children[pIndex];} } else if(aIndex==2) { // I can get the neighbor from the parent's face adjacent neighbor OctNode* temp=parent->__faceNeighbor(idx[1],i[1],0); if(!temp || !temp->children){return NULL;} else{return &temp->children[pIndex];} } else if(aIndex==0) { // I can get the neighbor from the parent return &parent->children[pIndex]; } else if(aIndex==3) { // I can get the neighbor from the parent's edge adjacent neighbor OctNode* temp=parent->__edgeNeighbor(o,i,idx,forceChildren); if(!temp){return NULL;} if(!temp->children){ if(forceChildren){temp->initChildren();} else{return temp;} } return &temp->children[pIndex]; } else{return NULL;} } template const OctNode* OctNode::cornerNeighbor(int cornerIndex) const { int pIndex,aIndex=0; if(!parent){return NULL;} pIndex=int(this-(parent->children)); aIndex=(cornerIndex ^ pIndex); // The disagreement bits pIndex=(~pIndex)&7; // The antipodal point if(aIndex==7){ // Agree on no bits return &parent->children[pIndex]; } else if(aIndex==0){ // Agree on all bits const OctNode* temp=((const OctNode*)parent)->cornerNeighbor(cornerIndex); if(!temp || !temp->children){return temp;} else{return &temp->children[pIndex];} } else if(aIndex==6){ // Agree on face 0 const OctNode* temp=((const OctNode*)parent)->__faceNeighbor(0,cornerIndex & 1); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==5){ // Agree on face 1 const OctNode* temp=((const OctNode*)parent)->__faceNeighbor(1,(cornerIndex & 2)>>1); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==3){ // Agree on face 2 const OctNode* temp=((const OctNode*)parent)->__faceNeighbor(2,(cornerIndex & 4)>>2); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==4){ // Agree on edge 2 const OctNode* temp=((const OctNode*)parent)->edgeNeighbor(8 | (cornerIndex & 1) | (cornerIndex & 2) ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==2){ // Agree on edge 1 const OctNode* temp=((const OctNode*)parent)->edgeNeighbor(4 | (cornerIndex & 1) | ((cornerIndex & 4)>>1) ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==1){ // Agree on edge 0 const OctNode* temp=((const OctNode*)parent)->edgeNeighbor(((cornerIndex & 2) | (cornerIndex & 4))>>1 ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else{return NULL;} } template OctNode* OctNode::cornerNeighbor(int cornerIndex,int forceChildren){ int pIndex,aIndex=0; if(!parent){return NULL;} pIndex=int(this-(parent->children)); aIndex=(cornerIndex ^ pIndex); // The disagreement bits pIndex=(~pIndex)&7; // The antipodal point if(aIndex==7){ // Agree on no bits return &parent->children[pIndex]; } else if(aIndex==0){ // Agree on all bits OctNode* temp=((OctNode*)parent)->cornerNeighbor(cornerIndex,forceChildren); if(!temp){return NULL;} if(!temp->children){ if(forceChildren){temp->initChildren();} else{return temp;} } return &temp->children[pIndex]; } else if(aIndex==6){ // Agree on face 0 OctNode* temp=((OctNode*)parent)->__faceNeighbor(0,cornerIndex & 1,0); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==5){ // Agree on face 1 OctNode* temp=((OctNode*)parent)->__faceNeighbor(1,(cornerIndex & 2)>>1,0); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==3){ // Agree on face 2 OctNode* temp=((OctNode*)parent)->__faceNeighbor(2,(cornerIndex & 4)>>2,0); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==4){ // Agree on edge 2 OctNode* temp=((OctNode*)parent)->edgeNeighbor(8 | (cornerIndex & 1) | (cornerIndex & 2) ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==2){ // Agree on edge 1 OctNode* temp=((OctNode*)parent)->edgeNeighbor(4 | (cornerIndex & 1) | ((cornerIndex & 4)>>1) ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else if(aIndex==1){ // Agree on edge 0 OctNode* temp=((OctNode*)parent)->edgeNeighbor(((cornerIndex & 2) | (cornerIndex & 4))>>1 ); if(!temp || !temp->children){return NULL;} else{return & temp->children[pIndex];} } else{return NULL;} } //////////////////////// // OctNodeNeighborKey // //////////////////////// template OctNode::Neighbors3::Neighbors3(void){clear();} template void OctNode::Neighbors3::clear(void){ for(int i=0;i<3;i++){for(int j=0;j<3;j++){for(int k=0;k<3;k++){neighbors[i][j][k]=NULL;}}} } template OctNode::NeighborKey3::NeighborKey3(void){ neighbors=NULL; } template OctNode::NeighborKey3::~NeighborKey3(void) { delete[] neighbors; neighbors = NULL; } template void OctNode::NeighborKey3::set( int d ) { delete[] neighbors; neighbors = NULL; if( d<0 ) return; neighbors = new Neighbors3[d+1]; } template< class NodeData , class Real > typename OctNode::Neighbors3& OctNode::NeighborKey3::setNeighbors( OctNode* root , Point3D< Real > p , int d ) { if( !neighbors[d].neighbors[1][1][1] || !neighbors[d].neighbors[1][1][1]->isInside( p ) ) { neighbors[d].clear(); if( !d ) neighbors[d].neighbors[1][1][1] = root; else { Neighbors3& temp = setNeighbors( root , p , d-1 ); int i , j , k , x1 , y1 , z1 , x2 , y2 , z2; Point3D< Real > c; Real w; temp.neighbors[1][1][1]->centerAndWidth( c , w ); int idx = CornerIndex( c , p ); Cube::FactorCornerIndex( idx , x1 , y1 , z1 ); Cube::FactorCornerIndex( (~idx)&7 , x2 , y2 , z2 ); if( !temp.neighbors[1][1][1]->children ) temp.neighbors[1][1][1]->initChildren(); for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][y2+j][z2+k] = &temp.neighbors[1][1][1]->children[Cube::CornerIndex(i,j,k)]; // Set the neighbors from across the faces i=x1<<1; if( temp.neighbors[i][1][1] ) { if( !temp.neighbors[i][1][1]->children ) temp.neighbors[i][1][1]->initChildren(); for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][y2+j][z2+k] = &temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)]; } j=y1<<1; if( temp.neighbors[1][j][1] ) { if( !temp.neighbors[1][j][1]->children ) temp.neighbors[1][j][1]->initChildren(); for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][j][z2+k] = &temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)]; } k=z1<<1; if( temp.neighbors[1][1][k] ) { if( !temp.neighbors[1][1][k]->children ) temp.neighbors[1][1][k]->initChildren(); for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[x2+i][y2+j][k] = &temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)]; } // Set the neighbors from across the edges i=x1<<1 , j=y1<<1; if( temp.neighbors[i][j][1] ) { if( !temp.neighbors[i][j][1]->children ) temp.neighbors[i][j][1]->initChildren(); for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][j][z2+k] = &temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)]; } i=x1<<1 , k=z1<<1; if( temp.neighbors[i][1][k] ) { if( !temp.neighbors[i][1][k]->children ) temp.neighbors[i][1][k]->initChildren(); for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[i][y2+j][k] = &temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)]; } j=y1<<1 , k=z1<<1; if( temp.neighbors[1][j][k] ) { if( !temp.neighbors[1][j][k]->children ) temp.neighbors[1][j][k]->initChildren(); for( i=0 ; i<2 ; i++ ) neighbors[d].neighbors[x2+i][j][k] = &temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)]; } // Set the neighbor from across the corner i=x1<<1 , j=y1<<1 , k=z1<<1; if( temp.neighbors[i][j][k] ) { if( !temp.neighbors[i][j][k]->children ) temp.neighbors[i][j][k]->initChildren(); neighbors[d].neighbors[i][j][k] = &temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } } return neighbors[d]; } template< class NodeData , class Real > typename OctNode::Neighbors3& OctNode::NeighborKey3::getNeighbors( OctNode* root , Point3D< Real > p , int d ) { if( !neighbors[d].neighbors[1][1][1] || !neighbors[d].neighbors[1][1][1]->isInside( p ) ) { neighbors[d].clear(); if( !d ) neighbors[d].neighbors[1][1][1] = root; else { Neighbors3& temp = getNeighbors( root , p , d-1 ); int i , j , k , x1 , y1 , z1 , x2 , y2 , z2; Point3D< Real > c; Real w; temp.neighbors[1][1][1]->centerAndWidth( c , w ); int idx = CornerIndex( c , p ); Cube::FactorCornerIndex( idx , x1 , y1 , z1 ); Cube::FactorCornerIndex( (~idx)&7 , x2 , y2 , z2 ); if( !temp.neighbors[1][1][1] || !temp.neighbors[1][1][1]->children ) { POISSON_THROW_EXCEPTION (pcl::poisson::PoissonBadArgumentException, "Couldn't find node at appropriate depth"); } for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][y2+j][z2+k] = &temp.neighbors[1][1][1]->children[Cube::CornerIndex(i,j,k)]; // Set the neighbors from across the faces i=x1<<1; if( temp.neighbors[i][1][1] ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][y2+j][z2+k] = &temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)]; j=y1<<1; if( temp.neighbors[1][j][1] ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][j][z2+k] = &temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)]; k=z1<<1; if( temp.neighbors[1][1][k] ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[x2+i][y2+j][k] = &temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)]; // Set the neighbors from across the edges i=x1<<1 , j=y1<<1; if( temp.neighbors[i][j][1] ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][j][z2+k] = &temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)]; i=x1<<1 , k=z1<<1; if( temp.neighbors[i][1][k] ) for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[i][y2+j][k] = &temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)]; j=y1<<1 , k=z1<<1; if( temp.neighbors[1][j][k] ) for( i=0 ; i<2 ; i++ ) neighbors[d].neighbors[x2+i][j][k] = &temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)]; // Set the neighbor from across the corner i=x1<<1 , j=y1<<1 , k=z1<<1; if( temp.neighbors[i][j][k] ) neighbors[d].neighbors[i][j][k] = &temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } return neighbors[d]; } template< class NodeData , class Real > typename OctNode::Neighbors3& OctNode::NeighborKey3::setNeighbors( OctNode* node ) { int d = node->depth(); if( node==neighbors[d].neighbors[1][1][1] ) { bool reset = false; for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) for( int k=0 ; k<3 ; k++ ) if( !neighbors[d].neighbors[i][j][k] ) reset = true; if( reset ) neighbors[d].neighbors[1][1][1] = NULL; } if( node!=neighbors[d].neighbors[1][1][1] ) { neighbors[d].clear(); if( !node->parent ) neighbors[d].neighbors[1][1][1] = node; else { int i,j,k,x1,y1,z1,x2,y2,z2; int idx=int(node-node->parent->children); Cube::FactorCornerIndex( idx ,x1,y1,z1); Cube::FactorCornerIndex((~idx)&7,x2,y2,z2); for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ neighbors[d].neighbors[x2+i][y2+j][z2+k]=&node->parent->children[Cube::CornerIndex(i,j,k)]; } } } Neighbors3& temp=setNeighbors(node->parent); // Set the neighbors from across the faces i=x1<<1; if(temp.neighbors[i][1][1]){ if(!temp.neighbors[i][1][1]->children){temp.neighbors[i][1][1]->initChildren();} for(j=0;j<2;j++){for(k=0;k<2;k++){neighbors[d].neighbors[i][y2+j][z2+k]=&temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)];}} } j=y1<<1; if(temp.neighbors[1][j][1]){ if(!temp.neighbors[1][j][1]->children){temp.neighbors[1][j][1]->initChildren();} for(i=0;i<2;i++){for(k=0;k<2;k++){neighbors[d].neighbors[x2+i][j][z2+k]=&temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)];}} } k=z1<<1; if(temp.neighbors[1][1][k]){ if(!temp.neighbors[1][1][k]->children){temp.neighbors[1][1][k]->initChildren();} for(i=0;i<2;i++){for(j=0;j<2;j++){neighbors[d].neighbors[x2+i][y2+j][k]=&temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)];}} } // Set the neighbors from across the edges i=x1<<1; j=y1<<1; if(temp.neighbors[i][j][1]){ if(!temp.neighbors[i][j][1]->children){temp.neighbors[i][j][1]->initChildren();} for(k=0;k<2;k++){neighbors[d].neighbors[i][j][z2+k]=&temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)];} } i=x1<<1; k=z1<<1; if(temp.neighbors[i][1][k]){ if(!temp.neighbors[i][1][k]->children){temp.neighbors[i][1][k]->initChildren();} for(j=0;j<2;j++){neighbors[d].neighbors[i][y2+j][k]=&temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)];} } j=y1<<1; k=z1<<1; if(temp.neighbors[1][j][k]){ if(!temp.neighbors[1][j][k]->children){temp.neighbors[1][j][k]->initChildren();} for(i=0;i<2;i++){neighbors[d].neighbors[x2+i][j][k]=&temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)];} } // Set the neighbor from across the corner i=x1<<1; j=y1<<1; k=z1<<1; if(temp.neighbors[i][j][k]){ if(!temp.neighbors[i][j][k]->children){temp.neighbors[i][j][k]->initChildren();} neighbors[d].neighbors[i][j][k]=&temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } } return neighbors[d]; } // Note the assumption is that if you enable an edge, you also enable adjacent faces. // And, if you enable a corner, you enable adjacent edges and faces. template< class NodeData , class Real > typename OctNode::Neighbors3& OctNode::NeighborKey3::setNeighbors( OctNode* node , bool flags[3][3][3] ) { int d = node->depth(); if( node==neighbors[d].neighbors[1][1][1] ) { bool reset = false; for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) for( int k=0 ; k<3 ; k++ ) if( flags[i][j][k] && !neighbors[d].neighbors[i][j][k] ) reset = true; if( reset ) neighbors[d].neighbors[1][1][1] = NULL; } if( node!=neighbors[d].neighbors[1][1][1] ) { neighbors[d].clear(); if( !node->parent ) neighbors[d].neighbors[1][1][1] = node; else { int x1,y1,z1,x2,y2,z2; int idx=int(node-node->parent->children); Cube::FactorCornerIndex( idx ,x1,y1,z1); Cube::FactorCornerIndex((~idx)&7,x2,y2,z2); for( int i=0 ; i<2 ; i++ ) for( int j=0 ; j<2 ; j++ ) for( int k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][y2+j][z2+k]=&node->parent->children[Cube::CornerIndex(i,j,k)]; Neighbors3& temp=setNeighbors( node->parent , flags ); // Set the neighbors from across the faces { int i=x1<<1; if( temp.neighbors[i][1][1] ) { if( flags[i][1][1] && !temp.neighbors[i][1][1]->children ) temp.neighbors[i][1][1]->initChildren(); if( temp.neighbors[i][1][1]->children ) for( int j=0 ; j<2 ; j++ ) for( int k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][y2+j][z2+k] = &temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)]; } } { int j = y1<<1; if( temp.neighbors[1][j][1] ) { if( flags[1][j][1] && !temp.neighbors[1][j][1]->children ) temp.neighbors[1][j][1]->initChildren(); if( temp.neighbors[1][j][1]->children ) for( int i=0 ; i<2 ; i++ ) for( int k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][j][z2+k] = &temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)]; } } { int k = z1<<1; if( temp.neighbors[1][1][k] ) { if( flags[1][1][k] && !temp.neighbors[1][1][k]->children ) temp.neighbors[1][1][k]->initChildren(); if( temp.neighbors[1][1][k]->children ) for( int i=0 ; i<2 ; i++ ) for( int j=0 ; j<2 ; j++ ) neighbors[d].neighbors[x2+i][y2+j][k] = &temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)]; } } // Set the neighbors from across the edges { int i=x1<<1 , j=y1<<1; if( temp.neighbors[i][j][1] ) { if( flags[i][j][1] && !temp.neighbors[i][j][1]->children ) temp.neighbors[i][j][1]->initChildren(); if( temp.neighbors[i][j][1]->children ) for( int k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][j][z2+k] = &temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)]; } } { int i=x1<<1 , k=z1<<1; if( temp.neighbors[i][1][k] ) { if( flags[i][1][k] && !temp.neighbors[i][1][k]->children ) temp.neighbors[i][1][k]->initChildren(); if( temp.neighbors[i][1][k]->children ) for( int j=0 ; j<2 ; j++ ) neighbors[d].neighbors[i][y2+j][k] = &temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)]; } } { int j=y1<<1 , k=z1<<1; if( temp.neighbors[1][j][k] ) { if( flags[1][j][k] && !temp.neighbors[1][j][k]->children ) temp.neighbors[1][j][k]->initChildren(); if( temp.neighbors[1][j][k]->children ) for( int i=0 ; i<2 ; i++ ) neighbors[d].neighbors[x2+i][j][k] = &temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)]; } } // Set the neighbor from across the corner { int i=x1<<1 , j=y1<<1 , k=z1<<1; if( temp.neighbors[i][j][k] ) { if( flags[i][j][k] && !temp.neighbors[i][j][k]->children ) temp.neighbors[i][j][k]->initChildren(); if( temp.neighbors[i][j][k]->children ) neighbors[d].neighbors[i][j][k] = &temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } } } return neighbors[d]; } template typename OctNode::Neighbors3& OctNode::NeighborKey3::getNeighbors(OctNode* node){ int d=node->depth(); if(node!=neighbors[d].neighbors[1][1][1]){ neighbors[d].clear(); if(!node->parent){neighbors[d].neighbors[1][1][1]=node;} else{ int i,j,k,x1,y1,z1,x2,y2,z2; int idx=int(node-node->parent->children); Cube::FactorCornerIndex( idx ,x1,y1,z1); Cube::FactorCornerIndex((~idx)&7,x2,y2,z2); for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ neighbors[d].neighbors[x2+i][y2+j][z2+k]=&node->parent->children[Cube::CornerIndex(i,j,k)]; } } } Neighbors3& temp=getNeighbors(node->parent); // Set the neighbors from across the faces i=x1<<1; if(temp.neighbors[i][1][1] && temp.neighbors[i][1][1]->children){ for(j=0;j<2;j++){for(k=0;k<2;k++){neighbors[d].neighbors[i][y2+j][z2+k]=&temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)];}} } j=y1<<1; if(temp.neighbors[1][j][1] && temp.neighbors[1][j][1]->children){ for(i=0;i<2;i++){for(k=0;k<2;k++){neighbors[d].neighbors[x2+i][j][z2+k]=&temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)];}} } k=z1<<1; if(temp.neighbors[1][1][k] && temp.neighbors[1][1][k]->children){ for(i=0;i<2;i++){for(j=0;j<2;j++){neighbors[d].neighbors[x2+i][y2+j][k]=&temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)];}} } // Set the neighbors from across the edges i=x1<<1; j=y1<<1; if(temp.neighbors[i][j][1] && temp.neighbors[i][j][1]->children){ for(k=0;k<2;k++){neighbors[d].neighbors[i][j][z2+k]=&temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)];} } i=x1<<1; k=z1<<1; if(temp.neighbors[i][1][k] && temp.neighbors[i][1][k]->children){ for(j=0;j<2;j++){neighbors[d].neighbors[i][y2+j][k]=&temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)];} } j=y1<<1; k=z1<<1; if(temp.neighbors[1][j][k] && temp.neighbors[1][j][k]->children){ for(i=0;i<2;i++){neighbors[d].neighbors[x2+i][j][k]=&temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)];} } // Set the neighbor from across the corner i=x1<<1; j=y1<<1; k=z1<<1; if(temp.neighbors[i][j][k] && temp.neighbors[i][j][k]->children){ neighbors[d].neighbors[i][j][k]=&temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } } return neighbors[node->depth()]; } /////////////////////// // ConstNeighborKey3 // /////////////////////// template OctNode::ConstNeighbors3::ConstNeighbors3(void){clear();} template void OctNode::ConstNeighbors3::clear(void){ for(int i=0;i<3;i++){for(int j=0;j<3;j++){for(int k=0;k<3;k++){neighbors[i][j][k]=NULL;}}} } template OctNode::ConstNeighborKey3::ConstNeighborKey3(void){neighbors=NULL;} template OctNode::ConstNeighborKey3::~ConstNeighborKey3(void){ delete[] neighbors; neighbors=NULL; } template void OctNode::ConstNeighborKey3::set(int d){ delete[] neighbors; neighbors=NULL; if(d<0){return;} neighbors=new ConstNeighbors3[d+1]; } template typename OctNode::ConstNeighbors3& OctNode::ConstNeighborKey3::getNeighbors(const OctNode* node){ int d=node->depth(); if(node!=neighbors[d].neighbors[1][1][1]){ neighbors[d].clear(); if(!node->parent){neighbors[d].neighbors[1][1][1]=node;} else{ int i,j,k,x1,y1,z1,x2,y2,z2; int idx=int(node-node->parent->children); Cube::FactorCornerIndex( idx ,x1,y1,z1); Cube::FactorCornerIndex((~idx)&7,x2,y2,z2); for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ neighbors[d].neighbors[x2+i][y2+j][z2+k]=&node->parent->children[Cube::CornerIndex(i,j,k)]; } } } ConstNeighbors3& temp=getNeighbors(node->parent); // Set the neighbors from across the faces i=x1<<1; if(temp.neighbors[i][1][1] && temp.neighbors[i][1][1]->children){ for(j=0;j<2;j++){for(k=0;k<2;k++){neighbors[d].neighbors[i][y2+j][z2+k]=&temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)];}} } j=y1<<1; if(temp.neighbors[1][j][1] && temp.neighbors[1][j][1]->children){ for(i=0;i<2;i++){for(k=0;k<2;k++){neighbors[d].neighbors[x2+i][j][z2+k]=&temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)];}} } k=z1<<1; if(temp.neighbors[1][1][k] && temp.neighbors[1][1][k]->children){ for(i=0;i<2;i++){for(j=0;j<2;j++){neighbors[d].neighbors[x2+i][y2+j][k]=&temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)];}} } // Set the neighbors from across the edges i=x1<<1; j=y1<<1; if(temp.neighbors[i][j][1] && temp.neighbors[i][j][1]->children){ for(k=0;k<2;k++){neighbors[d].neighbors[i][j][z2+k]=&temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)];} } i=x1<<1; k=z1<<1; if(temp.neighbors[i][1][k] && temp.neighbors[i][1][k]->children){ for(j=0;j<2;j++){neighbors[d].neighbors[i][y2+j][k]=&temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)];} } j=y1<<1; k=z1<<1; if(temp.neighbors[1][j][k] && temp.neighbors[1][j][k]->children){ for(i=0;i<2;i++){neighbors[d].neighbors[x2+i][j][k]=&temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)];} } // Set the neighbor from across the corner i=x1<<1; j=y1<<1; k=z1<<1; if(temp.neighbors[i][j][k] && temp.neighbors[i][j][k]->children){ neighbors[d].neighbors[i][j][k]=&temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } } return neighbors[node->depth()]; } template typename OctNode::ConstNeighbors3& OctNode::ConstNeighborKey3::getNeighbors( const OctNode* node , int minDepth ) { int d=node->depth(); if (d < minDepth) { POISSON_THROW_EXCEPTION (pcl::poisson::PoissonBadArgumentException, "Node depth lower than min-depth: (actual)" << d << " < (minimum)" << minDepth); } if( node!=neighbors[d].neighbors[1][1][1] ) { neighbors[d].clear(); if( d==minDepth ) neighbors[d].neighbors[1][1][1]=node; else { int i,j,k,x1,y1,z1,x2,y2,z2; int idx = int(node-node->parent->children); Cube::FactorCornerIndex( idx ,x1,y1,z1); Cube::FactorCornerIndex((~idx)&7,x2,y2,z2); ConstNeighbors3& temp=getNeighbors( node->parent , minDepth ); // Set the syblings for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][y2+j][z2+k] = &node->parent->children[ Cube::CornerIndex(i,j,k) ]; // Set the neighbors from across the faces i=x1<<1; if( temp.neighbors[i][1][1] && temp.neighbors[i][1][1]->children ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][y2+j][z2+k] = &temp.neighbors[i][1][1]->children[Cube::CornerIndex(x2,j,k)]; j=y1<<1; if( temp.neighbors[1][j][1] && temp.neighbors[1][j][1]->children ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[x2+i][j][z2+k] = &temp.neighbors[1][j][1]->children[Cube::CornerIndex(i,y2,k)]; k=z1<<1; if( temp.neighbors[1][1][k] && temp.neighbors[1][1][k]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[x2+i][y2+j][k] = &temp.neighbors[1][1][k]->children[Cube::CornerIndex(i,j,z2)]; // Set the neighbors from across the edges i=x1<<1 , j=y1<<1; if( temp.neighbors[i][j][1] && temp.neighbors[i][j][1]->children ) for( k=0 ; k<2 ; k++ ) neighbors[d].neighbors[i][j][z2+k] = &temp.neighbors[i][j][1]->children[Cube::CornerIndex(x2,y2,k)]; i=x1<<1 , k=z1<<1; if( temp.neighbors[i][1][k] && temp.neighbors[i][1][k]->children ) for( j=0 ; j<2 ; j++ ) neighbors[d].neighbors[i][y2+j][k] = &temp.neighbors[i][1][k]->children[Cube::CornerIndex(x2,j,z2)]; j=y1<<1 , k=z1<<1; if( temp.neighbors[1][j][k] && temp.neighbors[1][j][k]->children ) for( i=0 ; i<2 ; i++ ) neighbors[d].neighbors[x2+i][j][k] = &temp.neighbors[1][j][k]->children[Cube::CornerIndex(i,y2,z2)]; // Set the neighbor from across the corner i=x1<<1 , j=y1<<1 , k=z1<<1; if( temp.neighbors[i][j][k] && temp.neighbors[i][j][k]->children ) neighbors[d].neighbors[i][j][k] = &temp.neighbors[i][j][k]->children[Cube::CornerIndex(x2,y2,z2)]; } } return neighbors[node->depth()]; } template< class NodeData , class Real > OctNode< NodeData , Real >::Neighbors5::Neighbors5( void ){ clear(); } template< class NodeData , class Real > OctNode< NodeData , Real >::ConstNeighbors5::ConstNeighbors5( void ){ clear(); } template< class NodeData , class Real > void OctNode< NodeData , Real >::Neighbors5::clear( void ) { for( int i=0 ; i<5 ; i++ ) for( int j=0 ; j<5 ; j++ ) for( int k=0 ; k<5 ; k++ ) neighbors[i][j][k] = NULL; } template< class NodeData , class Real > void OctNode< NodeData , Real >::ConstNeighbors5::clear( void ) { for( int i=0 ; i<5 ; i++ ) for( int j=0 ; j<5 ; j++ ) for( int k=0 ; k<5 ; k++ ) neighbors[i][j][k] = NULL; } template< class NodeData , class Real > OctNode< NodeData , Real >::NeighborKey5::NeighborKey5( void ) { _depth = -1; neighbors = NULL; } template< class NodeData , class Real > OctNode< NodeData , Real >::ConstNeighborKey5::ConstNeighborKey5( void ) { _depth = -1; neighbors = NULL; } template< class NodeData , class Real > OctNode< NodeData , Real >::NeighborKey5::~NeighborKey5( void ) { delete[] neighbors; neighbors = NULL; } template< class NodeData , class Real > OctNode< NodeData , Real >::ConstNeighborKey5::~ConstNeighborKey5( void ) { delete[] neighbors; neighbors = NULL; } template< class NodeData , class Real > void OctNode< NodeData , Real >::NeighborKey5::set( int d ) { delete[] neighbors; neighbors = NULL; if(d<0) return; _depth = d; neighbors=new Neighbors5[d+1]; } template< class NodeData , class Real > void OctNode< NodeData , Real >::ConstNeighborKey5::set( int d ) { delete[] neighbors; neighbors = NULL; if(d<0) return; _depth = d; neighbors=new ConstNeighbors5[d+1]; } template< class NodeData , class Real > typename OctNode< NodeData , Real >::Neighbors5& OctNode< NodeData , Real >::NeighborKey5::getNeighbors( OctNode* node ) { int d=node->depth(); if( node!=neighbors[d].neighbors[2][2][2] ) { neighbors[d].clear(); if( !node->parent ) neighbors[d].neighbors[2][2][2]=node; else { getNeighbors( node->parent ); Neighbors5& temp = neighbors[d-1]; int x1 , y1 , z1 , x2 , y2 , z2; int idx = int( node - node->parent->children ); Cube::FactorCornerIndex( idx , x1 , y1 , z1 ); Neighbors5& n = neighbors[d]; Cube::FactorCornerIndex( (~idx)&7 , x2 , y2 , z2 ); int i , j , k; int fx0 = x2+1 , fy0 = y2+1 , fz0 = z2+1; // Indices of the bottom left corner of the parent within the 5x5x5 int cx1 = x1*2+1 , cy1 = y1*2+1 , cz1 = z1*2+1; int cx2 = x2*2+1 , cy2 = y2*2+1 , cz2 = z2*2+1; int fx1 = x1*3 , fy1 = y1*3 , fz1 = z1*3; int fx2 = x2*4 , fy2 = y2*4 , fz2 = z2*4; // Set the syblings for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy0+j][fz0+k] = node->parent->children + Cube::CornerIndex( i , j , k ); // Set the neighbors from across the faces if( temp.neighbors[cx1][2][2] && temp.neighbors[cx1][2][2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy0+j][fz0+k] = temp.neighbors[cx1][2][2]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[2][cy1][2] && temp.neighbors[2][cy1][2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy1+j][fz0+k] = temp.neighbors[2][cy1][2]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[2][2][cz1] && temp.neighbors[2][2][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy0+j][fz1+k] = temp.neighbors[2][2][cz1]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[cx2][2][2] && temp.neighbors[cx2][2][2]->children ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy0+j][fz0+k] = temp.neighbors[cx2][2][2]->children + Cube::CornerIndex( x1 , j , k ); if( temp.neighbors[2][cy2][2] && temp.neighbors[2][cy2][2]->children ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy2 ][fz0+k] = temp.neighbors[2][cy2][2]->children + Cube::CornerIndex( i , y1 , k ); if( temp.neighbors[2][2][cz2] && temp.neighbors[2][2][cz2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx0+i][fy0+j][fz2 ] = temp.neighbors[2][2][cz2]->children + Cube::CornerIndex( i , j , z1 ); // Set the neighbors from across the edges if( temp.neighbors[cx1][cy1][2] && temp.neighbors[cx1][cy1][2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy1+j][fz0+k] = temp.neighbors[cx1][cy1][2]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[cx1][2][cz1] && temp.neighbors[cx1][2][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy0+j][fz1+k] = temp.neighbors[cx1][2][cz1]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[2][cy1][cz1] && temp.neighbors[2][cy1][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy1+j][fz1+k] = temp.neighbors[2][cy1][cz1]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[cx1][cy2][2] && temp.neighbors[cx1][cy2][2]->children ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy2 ][fz0+k] = temp.neighbors[cx1][cy2][2]->children + Cube::CornerIndex( i , y1 , k ); if( temp.neighbors[cx1][2][cz2] && temp.neighbors[cx1][2][cz2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx1+i][fy0+j][fz2 ] = temp.neighbors[cx1][2][cz2]->children + Cube::CornerIndex( i , j , z1 ); if( temp.neighbors[cx2][cy1][2] && temp.neighbors[cx2][cy1][2]->children ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy1+j][fz0+k] = temp.neighbors[cx2][cy1][2]->children + Cube::CornerIndex( x1 , j , k ); if( temp.neighbors[2][cy1][cz2] && temp.neighbors[2][cy1][cz2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx0+i][fy1+j][fz2 ] = temp.neighbors[2][cy1][cz2]->children + Cube::CornerIndex( i , j , z1 ); if( temp.neighbors[cx2][2][cz1] && temp.neighbors[cx2][2][cz1]->children ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy0+j][fz1+k] = temp.neighbors[cx2][2][cz1]->children + Cube::CornerIndex( x1 , j , k ); if( temp.neighbors[2][cy2][cz1] && temp.neighbors[2][cy2][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx0+i][fy2 ][fz1+k] = temp.neighbors[2][cy2][cz1]->children + Cube::CornerIndex( i , y1 , k ); if( temp.neighbors[cx2][cy2][2] && temp.neighbors[cx2][cy2][2]->children ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy2 ][fz0+k] = temp.neighbors[cx2][cy2][2]->children + Cube::CornerIndex( x1 , y1 , k ); if( temp.neighbors[cx2][2][cz2] && temp.neighbors[cx2][2][cz2]->children ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx2 ][fy0+j][fz2 ] = temp.neighbors[cx2][2][cz2]->children + Cube::CornerIndex( x1 , j , z1 ); if( temp.neighbors[2][cy2][cz2] && temp.neighbors[2][cy2][cz2]->children ) for( i=0 ; i<2 ; i++ ) n.neighbors[fx0+i][fy2 ][fz2 ] = temp.neighbors[2][cy2][cz2]->children + Cube::CornerIndex( i , y1 , z1 ); // Set the neighbor from across the corners if( temp.neighbors[cx1][cy1][cz1] && temp.neighbors[cx1][cy1][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy1+j][fz1+k] = temp.neighbors[cx1][cy1][cz1]->children + Cube::CornerIndex( i , j , k ); if( temp.neighbors[cx1][cy1][cz2] && temp.neighbors[cx1][cy1][cz2]->children ) for( i=0 ; i<2 ; i++ ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx1+i][fy1+j][fz2 ] = temp.neighbors[cx1][cy1][cz2]->children + Cube::CornerIndex( i , j , z1 ); if( temp.neighbors[cx1][cy2][cz1] && temp.neighbors[cx1][cy2][cz1]->children ) for( i=0 ; i<2 ; i++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx1+i][fy2 ][fz1+k] = temp.neighbors[cx1][cy2][cz1]->children + Cube::CornerIndex( i , y1 , k ); if( temp.neighbors[cx2][cy1][cz1] && temp.neighbors[cx2][cy1][cz1]->children ) for( j=0 ; j<2 ; j++ ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy1+j][fz1+k] = temp.neighbors[cx2][cy1][cz1]->children + Cube::CornerIndex( x1 , j , k ); if( temp.neighbors[cx1][cy2][cz2] && temp.neighbors[cx1][cy2][cz2]->children ) for( i=0 ; i<2 ; i++ ) n.neighbors[fx1+i][fy2 ][fz2 ] = temp.neighbors[cx1][cy2][cz2]->children + Cube::CornerIndex( i , y1 , z1 ); if( temp.neighbors[cx2][cy1][cz2] && temp.neighbors[cx2][cy1][cz2]->children ) for( j=0 ; j<2 ; j++ ) n.neighbors[fx2 ][fy1+j][fz2 ] = temp.neighbors[cx2][cy1][cz2]->children + Cube::CornerIndex( x1 , j , z1 ); if( temp.neighbors[cx2][cy2][cz1] && temp.neighbors[cx2][cy2][cz1]->children ) for( k=0 ; k<2 ; k++ ) n.neighbors[fx2 ][fy2 ][fz1+k] = temp.neighbors[cx2][cy2][cz1]->children + Cube::CornerIndex( x1 , y1 , k ); if( temp.neighbors[cx2][cy2][cz2] && temp.neighbors[cx2][cy2][cz2]->children ) n.neighbors[fx2 ][fy2 ][fz2 ] = temp.neighbors[cx2][cy2][cz2]->children + Cube::CornerIndex( x1 , y1 , z1 ); } } return neighbors[d]; } template< class NodeData , class Real > typename OctNode< NodeData , Real >::Neighbors5& OctNode< NodeData , Real >::NeighborKey5::setNeighbors( OctNode* node , int xStart , int xEnd , int yStart , int yEnd , int zStart , int zEnd ) { int d=node->depth(); if( node!=neighbors[d].neighbors[2][2][2] ) { neighbors[d].clear(); if( !node->parent ) neighbors[d].neighbors[2][2][2]=node; else { setNeighbors( node->parent , xStart , xEnd , yStart , yEnd , zStart , zEnd ); Neighbors5& temp = neighbors[d-1]; int x1 , y1 , z1 , x2 , y2 , z2 , ii , jj , kk; int idx = int( node-node->parent->children ); Cube::FactorCornerIndex( idx , x1 , y1 , z1 ); for( int i=xStart ; i>1); for( int j=yStart ; j>1); for( int k=zStart ; k>1); if(temp.neighbors[x2][y2][z2] ) { if( !temp.neighbors[x2][y2][z2]->children ) temp.neighbors[x2][y2][z2]->initChildren(); neighbors[d].neighbors[i][j][k] = temp.neighbors[x2][y2][z2]->children + Cube::CornerIndex(ii,jj,kk); } } } } } } return neighbors[d]; } template< class NodeData , class Real > typename OctNode< NodeData , Real >::ConstNeighbors5& OctNode< NodeData , Real >::ConstNeighborKey5::getNeighbors( const OctNode* node ) { int d=node->depth(); if( node!=neighbors[d].neighbors[2][2][2] ) { neighbors[d].clear(); if(!node->parent) neighbors[d].neighbors[2][2][2]=node; else { getNeighbors( node->parent ); ConstNeighbors5& temp = neighbors[d-1]; int x1,y1,z1,x2,y2,z2,ii,jj,kk; int idx=int(node-node->parent->children); Cube::FactorCornerIndex(idx,x1,y1,z1); for(int i=0;i<5;i++) { x2=i+x1; ii=x2&1; x2=1+(x2>>1); for(int j=0;j<5;j++) { y2=j+y1; jj=y2&1; y2=1+(y2>>1); for(int k=0;k<5;k++) { z2=k+z1; kk=z2&1; z2=1+(z2>>1); if(temp.neighbors[x2][y2][z2] && temp.neighbors[x2][y2][z2]->children) neighbors[d].neighbors[i][j][k] = temp.neighbors[x2][y2][z2]->children + Cube::CornerIndex(ii,jj,kk); } } } } } return neighbors[d]; } template int OctNode::write(const char* fileName) const{ FILE* fp=fopen(fileName,"wb"); if(!fp){return 0;} int ret=write(fp); fclose(fp); return ret; } template int OctNode::write(FILE* fp) const{ fwrite(this,sizeof(OctNode),1,fp); if(children){for(int i=0;i int OctNode::read(const char* fileName){ FILE* fp=fopen(fileName,"rb"); if(!fp){return 0;} int ret=read(fp); fclose(fp); return ret; } template int OctNode::read(FILE* fp){ fread(this,sizeof(OctNode),1,fp); parent=NULL; if(children){ children=NULL; initChildren(); for(int i=0;i int OctNode::width(int maxDepth) const { int d=depth(); return 1<<(maxDepth-d); } template void OctNode::centerIndex(int maxDepth,int index[DIMENSION]) const { int d,o[3]; depthAndOffset(d,o); for(int i=0;i::CornerIndex(maxDepth,d+1,o[i]<<1,1);} } } }