/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $id: $ */ #pragma once #include #include #include // for Search namespace pcl { ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** \brief Decompose a region of space into clusters based on the Euclidean distance between points * \param[in] cloud the point cloud message * \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching * \note the tree has to be created as a spatial locator on \a cloud * \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space * \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices) * \param[out] indices_out * \param[in] delta_hue * \todo look how to make this templated! * \ingroup segmentation */ void seededHueSegmentation (const PointCloud &cloud, const search::Search::Ptr &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue = 0.0); /** \brief Decompose a region of space into clusters based on the Euclidean distance between points * \param[in] cloud the point cloud message * \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching * \note the tree has to be created as a spatial locator on \a cloud * \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space * \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices) * \param[out] indices_out * \param[in] delta_hue * \todo look how to make this templated! * \ingroup segmentation */ void seededHueSegmentation (const PointCloud &cloud, const search::Search::Ptr &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue = 0.0); ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** \brief SeededHueSegmentation * \author Koen Buys * \ingroup segmentation */ class SeededHueSegmentation: public PCLBase { using BasePCLBase = PCLBase; public: using PointCloud = pcl::PointCloud; using PointCloudPtr = PointCloud::Ptr; using PointCloudConstPtr = PointCloud::ConstPtr; using KdTree = pcl::search::Search; using KdTreePtr = pcl::search::Search::Ptr; using PointIndicesPtr = PointIndices::Ptr; using PointIndicesConstPtr = PointIndices::ConstPtr; ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** \brief Empty constructor. */ SeededHueSegmentation () : cluster_tolerance_ (0), delta_hue_ (0.0) {}; /** \brief Provide a pointer to the search object. * \param[in] tree a pointer to the spatial search object. */ inline void setSearchMethod (const KdTreePtr &tree) { tree_ = tree; } /** \brief Get a pointer to the search method used. */ inline KdTreePtr getSearchMethod () const { return (tree_); } /** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space * \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space */ inline void setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; } /** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */ inline double getClusterTolerance () const { return (cluster_tolerance_); } /** \brief Set the tollerance on the hue * \param[in] delta_hue the new delta hue */ inline void setDeltaHue (float delta_hue) { delta_hue_ = delta_hue; } /** \brief Get the tolerance on the hue */ inline float getDeltaHue () const { return (delta_hue_); } /** \brief Cluster extraction in a PointCloud given by * \param[in] indices_in * \param[out] indices_out */ void segment (PointIndices &indices_in, PointIndices &indices_out); protected: // Members derived from the base class using BasePCLBase::input_; using BasePCLBase::indices_; using BasePCLBase::initCompute; using BasePCLBase::deinitCompute; /** \brief A pointer to the spatial search object. */ KdTreePtr tree_; /** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */ double cluster_tolerance_; /** \brief The allowed difference on the hue*/ float delta_hue_; /** \brief Class getName method. */ virtual std::string getClassName () const { return ("seededHueSegmentation"); } }; } #ifdef PCL_NO_PRECOMPILE #include #endif