/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $id $ */ #ifndef PCL_SEGMENTATION_IMPL_SEEDED_HUE_SEGMENTATION_H_ #define PCL_SEGMENTATION_IMPL_SEEDED_HUE_SEGMENTATION_H_ #include #include // for PCL_ERROR #include // for OrganizedNeighbor #include // for KdTree ////////////////////////////////////////////////////////////////////////////////////////////// void pcl::seededHueSegmentation (const PointCloud &cloud, const search::Search::Ptr &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue) { if (tree->getInputCloud ()->size () != cloud.size ()) { PCL_ERROR("[pcl::seededHueSegmentation] Tree built for a different point cloud " "dataset (%zu) than the input cloud (%zu)!\n", static_cast(tree->getInputCloud()->size()), static_cast(cloud.size())); return; } // Create a bool vector of processed point indices, and initialize it to false std::vector processed (cloud.size (), false); Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (const auto &i : indices_in.indices) { if (processed[i]) continue; processed[i] = true; Indices seed_queue; int sq_idx = 0; seed_queue.push_back (i); PointXYZRGB p; p = cloud[i]; PointXYZHSV h; PointXYZRGBtoXYZHSV(p, h); while (sq_idx < static_cast (seed_queue.size ())) { int ret = tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances, std::numeric_limits::max()); if(ret == -1) PCL_ERROR("[pcl::seededHueSegmentation] radiusSearch returned error code -1\n"); // Search for sq_idx if (!ret) { sq_idx++; continue; } for (std::size_t j = 1; j < nn_indices.size (); ++j) // nn_indices[0] should be sq_idx { if (processed[nn_indices[j]]) // Has this point been processed before ? continue; PointXYZRGB p_l; p_l = cloud[nn_indices[j]]; PointXYZHSV h_l; PointXYZRGBtoXYZHSV(p_l, h_l); if (std::fabs(h_l.h - h.h) < delta_hue) { seed_queue.push_back (nn_indices[j]); processed[nn_indices[j]] = true; } } sq_idx++; } // Copy the seed queue into the output indices for (const auto &l : seed_queue) indices_out.indices.push_back(l); } // This is purely esthetical, can be removed for speed purposes std::sort (indices_out.indices.begin (), indices_out.indices.end ()); } ////////////////////////////////////////////////////////////////////////////////////////////// void pcl::seededHueSegmentation (const PointCloud &cloud, const search::Search::Ptr &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue) { if (tree->getInputCloud ()->size () != cloud.size ()) { PCL_ERROR("[pcl::seededHueSegmentation] Tree built for a different point cloud " "dataset (%zu) than the input cloud (%zu)!\n", static_cast(tree->getInputCloud()->size()), static_cast(cloud.size())); return; } // Create a bool vector of processed point indices, and initialize it to false std::vector processed (cloud.size (), false); Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (const auto &i : indices_in.indices) { if (processed[i]) continue; processed[i] = true; Indices seed_queue; int sq_idx = 0; seed_queue.push_back (i); PointXYZRGB p; p = cloud[i]; PointXYZHSV h; PointXYZRGBtoXYZHSV(p, h); while (sq_idx < static_cast (seed_queue.size ())) { int ret = tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances, std::numeric_limits::max()); if(ret == -1) PCL_ERROR("[pcl::seededHueSegmentation] radiusSearch returned error code -1\n"); // Search for sq_idx if (!ret) { sq_idx++; continue; } for (std::size_t j = 1; j < nn_indices.size (); ++j) // nn_indices[0] should be sq_idx { if (processed[nn_indices[j]]) // Has this point been processed before ? continue; PointXYZRGB p_l; p_l = cloud[nn_indices[j]]; PointXYZHSV h_l; PointXYZRGBtoXYZHSV(p_l, h_l); if (std::fabs(h_l.h - h.h) < delta_hue) { seed_queue.push_back (nn_indices[j]); processed[nn_indices[j]] = true; } } sq_idx++; } // Copy the seed queue into the output indices for (const auto &l : seed_queue) indices_out.indices.push_back(l); } // This is purely esthetical, can be removed for speed purposes std::sort (indices_out.indices.begin (), indices_out.indices.end ()); } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// void pcl::SeededHueSegmentation::segment (PointIndices &indices_in, PointIndices &indices_out) { if (!initCompute () || (input_ && input_->points.empty ()) || (indices_ && indices_->empty ())) { indices_out.indices.clear (); return; } // Initialize the spatial locator if (!tree_) { if (input_->isOrganized ()) tree_.reset (new pcl::search::OrganizedNeighbor ()); else tree_.reset (new pcl::search::KdTree (false)); } // Send the input dataset to the spatial locator tree_->setInputCloud (input_); seededHueSegmentation (*input_, tree_, static_cast (cluster_tolerance_), indices_in, indices_out, delta_hue_); deinitCompute (); } #endif // PCL_EXTRACT_CLUSTERS_IMPL_H_