/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #ifdef __SSE__ #include // for __m128 #endif // ifdef __SSE__ #ifdef __AVX__ #include // for __m256 #endif // ifdef __AVX__ #include #include namespace pcl { /** \brief SampleConsensusModelSphere defines a model for 3D sphere segmentation. * The model coefficients are defined as: * - \b center.x : the X coordinate of the sphere's center * - \b center.y : the Y coordinate of the sphere's center * - \b center.z : the Z coordinate of the sphere's center * - \b radius : the sphere's radius * * \author Radu B. Rusu * \ingroup sample_consensus */ template class SampleConsensusModelSphere : public SampleConsensusModel { public: using SampleConsensusModel::model_name_; using SampleConsensusModel::input_; using SampleConsensusModel::indices_; using SampleConsensusModel::radius_min_; using SampleConsensusModel::radius_max_; using SampleConsensusModel::error_sqr_dists_; using PointCloud = typename SampleConsensusModel::PointCloud; using PointCloudPtr = typename SampleConsensusModel::PointCloudPtr; using PointCloudConstPtr = typename SampleConsensusModel::PointCloudConstPtr; using Ptr = shared_ptr >; using ConstPtr = shared_ptr>; /** \brief Constructor for base SampleConsensusModelSphere. * \param[in] cloud the input point cloud dataset * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelSphere (const PointCloudConstPtr &cloud, bool random = false) : SampleConsensusModel (cloud, random) { model_name_ = "SampleConsensusModelSphere"; sample_size_ = 4; model_size_ = 4; } /** \brief Constructor for base SampleConsensusModelSphere. * \param[in] cloud the input point cloud dataset * \param[in] indices a vector of point indices to be used from \a cloud * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelSphere (const PointCloudConstPtr &cloud, const Indices &indices, bool random = false) : SampleConsensusModel (cloud, indices, random) { model_name_ = "SampleConsensusModelSphere"; sample_size_ = 4; model_size_ = 4; } /** \brief Empty destructor */ ~SampleConsensusModelSphere () {} /** \brief Copy constructor. * \param[in] source the model to copy into this */ SampleConsensusModelSphere (const SampleConsensusModelSphere &source) : SampleConsensusModel () { *this = source; model_name_ = "SampleConsensusModelSphere"; } /** \brief Copy constructor. * \param[in] source the model to copy into this */ inline SampleConsensusModelSphere& operator = (const SampleConsensusModelSphere &source) { SampleConsensusModel::operator=(source); return (*this); } /** \brief Check whether the given index samples can form a valid sphere model, compute the model * coefficients from these samples and store them internally in model_coefficients. * The sphere coefficients are: x, y, z, R. * \param[in] samples the point indices found as possible good candidates for creating a valid model * \param[out] model_coefficients the resultant model coefficients */ bool computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const override; /** \brief Compute all distances from the cloud data to a given sphere model. * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to * \param[out] distances the resultant estimated distances */ void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector &distances) const override; /** \brief Select all the points which respect the given model coefficients as inliers. * \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers * \param[out] inliers the resultant model inliers */ void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override; /** \brief Count all the points which respect the given model coefficients as inliers. * * \param[in] model_coefficients the coefficients of a model that we need to compute distances to * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers * \return the resultant number of inliers */ std::size_t countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Recompute the sphere coefficients using the given inlier set and return them to the user. * @note: these are the coefficients of the sphere model after refinement (e.g. after SVD) * \param[in] inliers the data inliers found as supporting the model * \param[in] model_coefficients the initial guess for the optimization * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization */ void optimizeModelCoefficients (const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override; /** \brief Create a new point cloud with inliers projected onto the sphere model. * \param[in] inliers the data inliers that we want to project on the sphere model * \param[in] model_coefficients the coefficients of a sphere model * \param[out] projected_points the resultant projected points * \param[in] copy_data_fields set to true if we need to copy the other data fields * \todo implement this. */ void projectPoints (const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true) const override; /** \brief Verify whether a subset of indices verifies the given sphere model coefficients. * \param[in] indices the data indices that need to be tested against the sphere model * \param[in] model_coefficients the sphere model coefficients * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers */ bool doSamplesVerifyModel (const std::set &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Return a unique id for this model (SACMODEL_SPHERE). */ inline pcl::SacModel getModelType () const override { return (SACMODEL_SPHERE); } protected: using SampleConsensusModel::sample_size_; using SampleConsensusModel::model_size_; /** \brief Check whether a model is valid given the user constraints. * \param[in] model_coefficients the set of model coefficients */ bool isModelValid (const Eigen::VectorXf &model_coefficients) const override { if (!SampleConsensusModel::isModelValid (model_coefficients)) return (false); if (radius_min_ != -std::numeric_limits::max() && model_coefficients[3] < radius_min_) return (false); if (radius_max_ != std::numeric_limits::max() && model_coefficients[3] > radius_max_) return (false); return (true); } /** \brief Check if a sample of indices results in a good sample of points * indices. * \param[in] samples the resultant index samples */ bool isSampleGood(const Indices &samples) const override; /** This implementation uses no SIMD instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceStandard (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__) /** This implementation uses SSE, SSE2, and SSE4.1 instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceSSE (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #endif #if defined (__AVX__) && defined (__AVX2__) /** This implementation uses AVX and AVX2 instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceAVX (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #endif private: struct OptimizationFunctor : pcl::Functor { /** Functor constructor * \param[in] indices the indices of data points to evaluate * \param[in] estimator pointer to the estimator object */ OptimizationFunctor (const pcl::SampleConsensusModelSphere *model, const Indices& indices) : pcl::Functor (indices.size ()), model_ (model), indices_ (indices) {} /** Cost function to be minimized * \param[in] x the variables array * \param[out] fvec the resultant functions evaluations * \return 0 */ int operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const { Eigen::Vector4f cen_t; cen_t[3] = 0; for (int i = 0; i < values (); ++i) { // Compute the difference between the center of the sphere and the datapoint X_i cen_t.head<3>() = (*model_->input_)[indices_[i]].getVector3fMap() - x.head<3>(); // g = sqrt ((x-a)^2 + (y-b)^2 + (z-c)^2) - R fvec[i] = std::sqrt (cen_t.dot (cen_t)) - x[3]; } return (0); } const pcl::SampleConsensusModelSphere *model_; const Indices &indices_; }; #ifdef __AVX__ inline __m256 sqr_dist8 (const std::size_t i, const __m256 a_vec, const __m256 b_vec, const __m256 c_vec) const; #endif #ifdef __SSE__ inline __m128 sqr_dist4 (const std::size_t i, const __m128 a_vec, const __m128 b_vec, const __m128 c_vec) const; #endif }; } #ifdef PCL_NO_PRECOMPILE #include #endif