/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #ifdef __SSE__ #include // for __m128 #endif // ifdef __SSE__ #ifdef __AVX__ #include // for __m256 #endif // ifdef __AVX__ #include #include namespace pcl { /** \brief Project a point on a planar model given by a set of normalized coefficients * \param[in] p the input point to project * \param[in] model_coefficients the coefficients of the plane (a, b, c, d) that satisfy ax+by+cz+d=0 * \param[out] q the resultant projected point */ template inline void projectPoint (const Point &p, const Eigen::Vector4f &model_coefficients, Point &q) { // Calculate the distance from the point to the plane Eigen::Vector4f pp (p.x, p.y, p.z, 1); // use normalized coefficients to calculate the scalar projection float distance_to_plane = pp.dot(model_coefficients); //TODO: Why doesn't getVector4Map work here? //Eigen::Vector4f q_e = q.getVector4fMap (); //q_e = pp - model_coefficients * distance_to_plane; Eigen::Vector4f q_e = pp - distance_to_plane * model_coefficients; q.x = q_e[0]; q.y = q_e[1]; q.z = q_e[2]; } /** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0 * \param p a point * \param a the normalized a coefficient of a plane * \param b the normalized b coefficient of a plane * \param c the normalized c coefficient of a plane * \param d the normalized d coefficient of a plane * \ingroup sample_consensus */ template inline double pointToPlaneDistanceSigned (const Point &p, double a, double b, double c, double d) { return (a * p.x + b * p.y + c * p.z + d); } /** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0 * \param p a point * \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane * \ingroup sample_consensus */ template inline double pointToPlaneDistanceSigned (const Point &p, const Eigen::Vector4f &plane_coefficients) { return ( plane_coefficients[0] * p.x + plane_coefficients[1] * p.y + plane_coefficients[2] * p.z + plane_coefficients[3] ); } /** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0 * \param p a point * \param a the normalized a coefficient of a plane * \param b the normalized b coefficient of a plane * \param c the normalized c coefficient of a plane * \param d the normalized d coefficient of a plane * \ingroup sample_consensus */ template inline double pointToPlaneDistance (const Point &p, double a, double b, double c, double d) { return (std::abs (pointToPlaneDistanceSigned (p, a, b, c, d)) ); } /** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0 * \param p a point * \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane * \ingroup sample_consensus */ template inline double pointToPlaneDistance (const Point &p, const Eigen::Vector4f &plane_coefficients) { return ( std::abs (pointToPlaneDistanceSigned (p, plane_coefficients)) ); } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** \brief SampleConsensusModelPlane defines a model for 3D plane segmentation. * The model coefficients are defined as: * - \b a : the X coordinate of the plane's normal (normalized) * - \b b : the Y coordinate of the plane's normal (normalized) * - \b c : the Z coordinate of the plane's normal (normalized) * - \b d : the fourth Hessian component of the plane's equation * * \author Radu B. Rusu * \ingroup sample_consensus */ template class SampleConsensusModelPlane : public SampleConsensusModel { public: using SampleConsensusModel::model_name_; using SampleConsensusModel::input_; using SampleConsensusModel::indices_; using SampleConsensusModel::error_sqr_dists_; using SampleConsensusModel::isModelValid; using PointCloud = typename SampleConsensusModel::PointCloud; using PointCloudPtr = typename SampleConsensusModel::PointCloudPtr; using PointCloudConstPtr = typename SampleConsensusModel::PointCloudConstPtr; using Ptr = shared_ptr >; using ConstPtr = shared_ptr>; /** \brief Constructor for base SampleConsensusModelPlane. * \param[in] cloud the input point cloud dataset * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelPlane (const PointCloudConstPtr &cloud, bool random = false) : SampleConsensusModel (cloud, random) { model_name_ = "SampleConsensusModelPlane"; sample_size_ = 3; model_size_ = 4; } /** \brief Constructor for base SampleConsensusModelPlane. * \param[in] cloud the input point cloud dataset * \param[in] indices a vector of point indices to be used from \a cloud * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelPlane (const PointCloudConstPtr &cloud, const Indices &indices, bool random = false) : SampleConsensusModel (cloud, indices, random) { model_name_ = "SampleConsensusModelPlane"; sample_size_ = 3; model_size_ = 4; } /** \brief Empty destructor */ ~SampleConsensusModelPlane () {} /** \brief Check whether the given index samples can form a valid plane model, compute the model coefficients from * these samples and store them internally in model_coefficients_. The plane coefficients are: * a, b, c, d (ax+by+cz+d=0) * \param[in] samples the point indices found as possible good candidates for creating a valid model * \param[out] model_coefficients the resultant model coefficients */ bool computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const override; /** \brief Compute all distances from the cloud data to a given plane model. * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to * \param[out] distances the resultant estimated distances */ void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector &distances) const override; /** \brief Select all the points which respect the given model coefficients as inliers. * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers * \param[out] inliers the resultant model inliers */ void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override; /** \brief Count all the points which respect the given model coefficients as inliers. * * \param[in] model_coefficients the coefficients of a model that we need to compute distances to * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers * \return the resultant number of inliers */ std::size_t countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Recompute the plane coefficients using the given inlier set and return them to the user. * @note: these are the coefficients of the plane model after refinement (e.g. after SVD) * \param[in] inliers the data inliers found as supporting the model * \param[in] model_coefficients the initial guess for the model coefficients * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization */ void optimizeModelCoefficients (const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override; /** \brief Create a new point cloud with inliers projected onto the plane model. * \param[in] inliers the data inliers that we want to project on the plane model * \param[in] model_coefficients the *normalized* coefficients of a plane model * \param[out] projected_points the resultant projected points * \param[in] copy_data_fields set to true if we need to copy the other data fields */ void projectPoints (const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true) const override; /** \brief Verify whether a subset of indices verifies the given plane model coefficients. * \param[in] indices the data indices that need to be tested against the plane model * \param[in] model_coefficients the plane model coefficients * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers */ bool doSamplesVerifyModel (const std::set &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Return a unique id for this model (SACMODEL_PLANE). */ inline pcl::SacModel getModelType () const override { return (SACMODEL_PLANE); } protected: using SampleConsensusModel::sample_size_; using SampleConsensusModel::model_size_; /** This implementation uses no SIMD instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceStandard (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__) /** This implementation uses SSE, SSE2, and SSE4.1 instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceSSE (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #endif #if defined (__AVX__) && defined (__AVX2__) /** This implementation uses AVX and AVX2 instructions. It is not intended for normal use. * See countWithinDistance which automatically uses the fastest implementation. */ std::size_t countWithinDistanceAVX (const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i = 0) const; #endif #ifdef __AVX__ inline __m256 dist8 (const std::size_t i, const __m256 &a_vec, const __m256 &b_vec, const __m256 &c_vec, const __m256 &d_vec, const __m256 &abs_help) const; #endif #ifdef __SSE__ inline __m128 dist4 (const std::size_t i, const __m128 &a_vec, const __m128 &b_vec, const __m128 &c_vec, const __m128 &d_vec, const __m128 &abs_help) const; #endif private: /** \brief Check if a sample of indices results in a good sample of points * indices. * \param[in] samples the resultant index samples */ bool isSampleGood (const Indices &samples) const override; }; } #ifdef PCL_NO_PRECOMPILE #include #endif