/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #pragma once #include #include namespace pcl { /** \brief SampleConsensusModelCircle3D defines a model for 3D circle segmentation. * * The model coefficients are defined as: * - \b center.x : the X coordinate of the circle's center * - \b center.y : the Y coordinate of the circle's center * - \b center.z : the Z coordinate of the circle's center * - \b radius : the circle's radius * - \b normal.x : the X coordinate of the normal's direction * - \b normal.y : the Y coordinate of the normal's direction * - \b normal.z : the Z coordinate of the normal's direction * * \author Raoul Hoffmann, Karol Hausman, Radu B. Rusu * \ingroup sample_consensus */ template class SampleConsensusModelCircle3D : public SampleConsensusModel { public: using SampleConsensusModel::model_name_; using SampleConsensusModel::input_; using SampleConsensusModel::indices_; using SampleConsensusModel::radius_min_; using SampleConsensusModel::radius_max_; using PointCloud = typename SampleConsensusModel::PointCloud; using PointCloudPtr = typename SampleConsensusModel::PointCloudPtr; using PointCloudConstPtr = typename SampleConsensusModel::PointCloudConstPtr; using Ptr = shared_ptr >; using ConstPtr = shared_ptr >; /** \brief Constructor for base SampleConsensusModelCircle3D. * \param[in] cloud the input point cloud dataset * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelCircle3D (const PointCloudConstPtr &cloud, bool random = false) : SampleConsensusModel (cloud, random) { model_name_ = "SampleConsensusModelCircle3D"; sample_size_ = 3; model_size_ = 7; } /** \brief Constructor for base SampleConsensusModelCircle3D. * \param[in] cloud the input point cloud dataset * \param[in] indices a vector of point indices to be used from \a cloud * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelCircle3D (const PointCloudConstPtr &cloud, const Indices &indices, bool random = false) : SampleConsensusModel (cloud, indices, random) { model_name_ = "SampleConsensusModelCircle3D"; sample_size_ = 3; model_size_ = 7; } /** \brief Empty destructor */ ~SampleConsensusModelCircle3D () {} /** \brief Copy constructor. * \param[in] source the model to copy into this */ SampleConsensusModelCircle3D (const SampleConsensusModelCircle3D &source) : SampleConsensusModel () { *this = source; model_name_ = "SampleConsensusModelCircle3D"; } /** \brief Copy constructor. * \param[in] source the model to copy into this */ inline SampleConsensusModelCircle3D& operator = (const SampleConsensusModelCircle3D &source) { SampleConsensusModel::operator=(source); return (*this); } /** \brief Check whether the given index samples can form a valid 2D circle model, compute the model coefficients * from these samples and store them in model_coefficients. The circle coefficients are: x, y, R. * \param[in] samples the point indices found as possible good candidates for creating a valid model * \param[out] model_coefficients the resultant model coefficients */ bool computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const override; /** \brief Compute all distances from the cloud data to a given 3D circle model. * \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to * \param[out] distances the resultant estimated distances */ void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector &distances) const override; /** \brief Compute all distances from the cloud data to a given 3D circle model. * \param[in] model_coefficients the coefficients of a 3D circle model that we need to compute distances to * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers * \param[out] inliers the resultant model inliers */ void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override; /** \brief Count all the points which respect the given model coefficients as inliers. * * \param[in] model_coefficients the coefficients of a model that we need to compute distances to * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers * \return the resultant number of inliers */ std::size_t countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Recompute the 3d circle coefficients using the given inlier set and return them to the user. * @note: these are the coefficients of the 3d circle model after refinement (e.g. after SVD) * \param[in] inliers the data inliers found as supporting the model * \param[in] model_coefficients the initial guess for the optimization * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization */ void optimizeModelCoefficients (const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override; /** \brief Create a new point cloud with inliers projected onto the 3d circle model. * \param[in] inliers the data inliers that we want to project on the 3d circle model * \param[in] model_coefficients the coefficients of a 3d circle model * \param[out] projected_points the resultant projected points * \param[in] copy_data_fields set to true if we need to copy the other data fields */ void projectPoints (const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields = true) const override; /** \brief Verify whether a subset of indices verifies the given 3d circle model coefficients. * \param[in] indices the data indices that need to be tested against the 3d circle model * \param[in] model_coefficients the 3d circle model coefficients * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers */ bool doSamplesVerifyModel (const std::set &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Return a unique id for this model (SACMODEL_CIRCLE3D). */ inline pcl::SacModel getModelType () const override { return (SACMODEL_CIRCLE3D); } protected: using SampleConsensusModel::sample_size_; using SampleConsensusModel::model_size_; /** \brief Check whether a model is valid given the user constraints. * \param[in] model_coefficients the set of model coefficients */ bool isModelValid (const Eigen::VectorXf &model_coefficients) const override; /** \brief Check if a sample of indices results in a good sample of points indices. * \param[in] samples the resultant index samples */ bool isSampleGood(const Indices &samples) const override; private: /** \brief Functor for the optimization function */ struct OptimizationFunctor : pcl::Functor { /** Functor constructor * \param[in] indices the indices of data points to evaluate * \param[in] estimator pointer to the estimator object */ OptimizationFunctor (const pcl::SampleConsensusModelCircle3D *model, const Indices& indices) : pcl::Functor (indices.size ()), model_ (model), indices_ (indices) {} /** Cost function to be minimized * \param[in] x the variables array * \param[out] fvec the resultant functions evaluations * \return 0 */ int operator() (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const { for (int i = 0; i < values (); ++i) { // what i have: // P : Sample Point Eigen::Vector3d P = (*model_->input_)[indices_[i]].getVector3fMap().template cast(); // C : Circle Center Eigen::Vector3d C (x[0], x[1], x[2]); // N : Circle (Plane) Normal Eigen::Vector3d N (x[4], x[5], x[6]); // r : Radius double r = x[3]; Eigen::Vector3d helperVectorPC = P - C; // 1.1. get line parameter //float lambda = (helperVectorPC.dot(N)) / N.squaredNorm() ; double lambda = (-(helperVectorPC.dot (N))) / N.dot (N); // Projected Point on plane Eigen::Vector3d P_proj = P + lambda * N; Eigen::Vector3d helperVectorP_projC = P_proj - C; // K : Point on Circle Eigen::Vector3d K = C + r * helperVectorP_projC.normalized (); Eigen::Vector3d distanceVector = P - K; fvec[i] = distanceVector.norm (); } return (0); } const pcl::SampleConsensusModelCircle3D *model_; const Indices &indices_; }; }; } #ifdef PCL_NO_PRECOMPILE #include #endif