/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2009, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_ #define PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_ #include #ifdef _OPENMP #include #endif #if defined _OPENMP && _OPENMP >= 201107 // We need OpenMP 3.1 for the atomic constructs #define OPENMP_AVAILABLE_RANSAC true #else #define OPENMP_AVAILABLE_RANSAC false #endif ////////////////////////////////////////////////////////////////////////// template bool pcl::RandomSampleConsensus::computeModel (int) { // Warn and exit if no threshold was set if (threshold_ == std::numeric_limits::max()) { PCL_ERROR ("[pcl::RandomSampleConsensus::computeModel] No threshold set!\n"); return (false); } iterations_ = 0; std::size_t n_best_inliers_count = 0; double k = std::numeric_limits::max(); Indices selection; Eigen::VectorXf model_coefficients (sac_model_->getModelSize ()); const double log_probability = std::log (1.0 - probability_); const double one_over_indices = 1.0 / static_cast (sac_model_->getIndices ()->size ()); unsigned skipped_count = 0; // suppress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters! const unsigned max_skip = max_iterations_ * 10; int threads = threads_; if (threads >= 0) { #if OPENMP_AVAILABLE_RANSAC if (threads == 0) { threads = omp_get_num_procs(); PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Automatic number of threads requested, choosing %i threads.\n", threads); } #else // Parallelization desired, but not available PCL_WARN ("[pcl::RandomSampleConsensus::computeModel] Parallelization is requested, but OpenMP 3.1 is not available! Continuing without parallelization.\n"); threads = -1; #endif } #if OPENMP_AVAILABLE_RANSAC #pragma omp parallel if(threads > 0) num_threads(threads) shared(k, skipped_count, n_best_inliers_count) firstprivate(selection, model_coefficients) // would be nice to have a default(none)-clause here, but then some compilers complain about the shared const variables #endif { #if OPENMP_AVAILABLE_RANSAC if (omp_in_parallel()) #pragma omp master PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Computing in parallel with up to %i threads.\n", omp_get_num_threads()); else #endif PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Computing not parallel.\n"); // Iterate while (true) // infinite loop with four possible breaks { // Get X samples which satisfy the model criteria #if OPENMP_AVAILABLE_RANSAC #pragma omp critical(samples) #endif { sac_model_->getSamples (iterations_, selection); // The random number generator used when choosing the samples should not be called in parallel } if (selection.empty ()) { PCL_ERROR ("[pcl::RandomSampleConsensus::computeModel] No samples could be selected!\n"); break; } // Search for inliers in the point cloud for the current plane model M if (!sac_model_->computeModelCoefficients (selection, model_coefficients)) // This function has to be thread-safe { //++iterations_; unsigned skipped_count_tmp; #if OPENMP_AVAILABLE_RANSAC #pragma omp atomic capture #endif skipped_count_tmp = ++skipped_count; if (skipped_count_tmp < max_skip) continue; else break; } // Select the inliers that are within threshold_ from the model //sac_model_->selectWithinDistance (model_coefficients, threshold_, inliers); //if (inliers.empty () && k > 1.0) // continue; std::size_t n_inliers_count = sac_model_->countWithinDistance (model_coefficients, threshold_); // This functions has to be thread-safe. Most work is done here std::size_t n_best_inliers_count_tmp; #if OPENMP_AVAILABLE_RANSAC #pragma omp atomic read #endif n_best_inliers_count_tmp = n_best_inliers_count; if (n_inliers_count > n_best_inliers_count_tmp) // This condition is false most of the time, and the critical region is not entered, hopefully leading to more efficient concurrency { #if OPENMP_AVAILABLE_RANSAC #pragma omp critical(update) // n_best_inliers_count, model_, model_coefficients_, k are shared and read/write must be protected #endif { // Better match ? if (n_inliers_count > n_best_inliers_count) { n_best_inliers_count = n_inliers_count; // This write and the previous read of n_best_inliers_count must be consecutive and must not be interrupted! n_best_inliers_count_tmp = n_best_inliers_count; // Save the current model/inlier/coefficients selection as being the best so far model_ = selection; model_coefficients_ = model_coefficients; // Compute the k parameter (k=std::log(z)/std::log(1-w^n)) const double w = static_cast (n_best_inliers_count) * one_over_indices; double p_no_outliers = 1.0 - std::pow (w, static_cast (selection.size ())); p_no_outliers = (std::max) (std::numeric_limits::epsilon (), p_no_outliers); // Avoid division by -Inf p_no_outliers = (std::min) (1.0 - std::numeric_limits::epsilon (), p_no_outliers); // Avoid division by 0. k = log_probability / std::log (p_no_outliers); } } // omp critical } int iterations_tmp; double k_tmp; #if OPENMP_AVAILABLE_RANSAC #pragma omp atomic capture #endif iterations_tmp = ++iterations_; #if OPENMP_AVAILABLE_RANSAC #pragma omp atomic read #endif k_tmp = k; #if OPENMP_AVAILABLE_RANSAC PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Trial %d out of %f: %u inliers (best is: %u so far) (thread %d).\n", iterations_tmp, k_tmp, n_inliers_count, n_best_inliers_count_tmp, omp_get_thread_num()); #else PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Trial %d out of %f: %u inliers (best is: %u so far).\n", iterations_tmp, k_tmp, n_inliers_count, n_best_inliers_count_tmp); #endif if (iterations_tmp > k_tmp) break; if (iterations_tmp > max_iterations_) { PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] RANSAC reached the maximum number of trials.\n"); break; } } // while } // omp parallel PCL_DEBUG ("[pcl::RandomSampleConsensus::computeModel] Model: %lu size, %u inliers.\n", model_.size (), n_best_inliers_count); if (model_.empty ()) { PCL_ERROR ("[pcl::RandomSampleConsensus::computeModel] RANSAC found no model.\n"); inliers_.clear (); return (false); } // Get the set of inliers that correspond to the best model found so far sac_model_->selectWithinDistance (model_coefficients_, threshold_, inliers_); return (true); } #define PCL_INSTANTIATE_RandomSampleConsensus(T) template class PCL_EXPORTS pcl::RandomSampleConsensus; #endif // PCL_SAMPLE_CONSENSUS_IMPL_RANSAC_H_