/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2009, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_ #define PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_ #include #include // for computeMedian ////////////////////////////////////////////////////////////////////////// template bool pcl::LeastMedianSquares::computeModel (int debug_verbosity_level) { // Warn and exit if no threshold was set if (threshold_ == std::numeric_limits::max()) { PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] No threshold set!\n"); return (false); } iterations_ = 0; double d_best_penalty = std::numeric_limits::max(); Indices selection; Eigen::VectorXf model_coefficients (sac_model_->getModelSize ()); std::vector distances; unsigned skipped_count = 0; // suppress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters! const unsigned max_skip = max_iterations_ * 10; // Iterate while ((iterations_ < max_iterations_) && (skipped_count < max_skip)) { // Get X samples which satisfy the model criteria sac_model_->getSamples (iterations_, selection); if (selection.empty ()) { PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] No samples could be selected!\n"); break; } // Search for inliers in the point cloud for the current plane model M if (!sac_model_->computeModelCoefficients (selection, model_coefficients)) { //iterations_++; ++skipped_count; PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] The function computeModelCoefficients failed, so continue with next iteration.\n"); continue; } double d_cur_penalty; // d_cur_penalty = sum (min (dist, threshold)) // Iterate through the 3d points and calculate the distances from them to the model sac_model_->getDistancesToModel (model_coefficients, distances); // No distances? The model must not respect the user given constraints if (distances.empty ()) { //iterations_++; ++skipped_count; continue; } // Move all NaNs in distances to the end const auto new_end = (sac_model_->getInputCloud()->is_dense ? distances.end() : std::partition (distances.begin(), distances.end(), [](double d){return !std::isnan (d);})); const auto nr_valid_dists = std::distance (distances.begin (), new_end); // d_cur_penalty = median (distances) PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] There are %lu valid distances remaining after removing NaN values.\n", nr_valid_dists); if (nr_valid_dists == 0) { //iterations_++; ++skipped_count; continue; } d_cur_penalty = pcl::computeMedian (distances.begin (), new_end, static_cast(std::sqrt)); // Better match ? if (d_cur_penalty < d_best_penalty) { d_best_penalty = d_cur_penalty; // Save the current model/coefficients selection as being the best so far model_ = selection; model_coefficients_ = model_coefficients; } ++iterations_; if (debug_verbosity_level > 1) { PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, max_iterations_, d_best_penalty); } } if (model_.empty ()) { if (debug_verbosity_level > 0) { PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Unable to find a solution!\n"); } return (false); } // Classify the data points into inliers and outliers // Sigma = 1.4826 * (1 + 5 / (n-d)) * sqrt (M) // @note: See "Robust Regression Methods for Computer Vision: A Review" //double sigma = 1.4826 * (1 + 5 / (sac_model_->getIndices ()->size () - best_model.size ())) * sqrt (d_best_penalty); //double threshold = 2.5 * sigma; // Iterate through the 3d points and calculate the distances from them to the model again sac_model_->getDistancesToModel (model_coefficients_, distances); // No distances? The model must not respect the user given constraints if (distances.empty ()) { PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] The model found failed to verify against the given constraints!\n"); return (false); } Indices &indices = *sac_model_->getIndices (); if (distances.size () != indices.size ()) { PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] Estimated distances (%lu) differs than the normal of indices (%lu).\n", distances.size (), indices.size ()); return (false); } inliers_.resize (distances.size ()); // Get the inliers for the best model found std::size_t n_inliers_count = 0; for (std::size_t i = 0; i < distances.size (); ++i) { if (distances[i] <= threshold_) { inliers_[n_inliers_count++] = indices[i]; } } // Resize the inliers vector inliers_.resize (n_inliers_count); if (debug_verbosity_level > 0) { PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Model: %lu size, %lu inliers.\n", model_.size (), n_inliers_count); } return (true); } #define PCL_INSTANTIATE_LeastMedianSquares(T) template class PCL_EXPORTS pcl::LeastMedianSquares; #endif // PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_