/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #include #include #include #include namespace pcl { namespace distances { /** \brief Compute the median value from a set of doubles * \param[in] fvec the set of doubles * \param[in] m the number of doubles in the set */ inline double computeMedian(double* fvec, int m) { // Copy the values to vectors for faster sorting std::vector data(m); memcpy(&data[0], fvec, sizeof(double) * m); std::nth_element(data.begin(), data.begin() + (data.size() >> 1), data.end()); return (data[data.size() >> 1]); } /** \brief Use a Huber kernel to estimate the distance between two vectors * \param[in] p_src the first eigen vector * \param[in] p_tgt the second eigen vector * \param[in] sigma the sigma value */ inline double huber(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt, double sigma) { Eigen::Array4f diff = (p_tgt.array() - p_src.array()).abs(); double norm = 0.0; for (int i = 0; i < 3; ++i) { if (diff[i] < sigma) norm += diff[i] * diff[i]; else norm += 2.0 * sigma * diff[i] - sigma * sigma; } return (norm); } /** \brief Use a Huber kernel to estimate the distance between two vectors * \param[in] diff the norm difference between two vectors * \param[in] sigma the sigma value */ inline double huber(double diff, double sigma) { double norm = 0.0; if (diff < sigma) norm += diff * diff; else norm += 2.0 * sigma * diff - sigma * sigma; return (norm); } /** \brief Use a Gedikli kernel to estimate the distance between two vectors * (for more information, see * \param[in] val the norm difference between two vectors * \param[in] clipping the clipping value * \param[in] slope the slope. Default: 4 */ inline double gedikli(double val, double clipping, double slope = 4) { return (1.0 / (1.0 + pow(std::abs(val) / clipping, slope))); } /** \brief Compute the Manhattan distance between two eigen vectors. * \param[in] p_src the first eigen vector * \param[in] p_tgt the second eigen vector */ inline double l1(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt) { return ((p_src.array() - p_tgt.array()).abs().sum()); } /** \brief Compute the Euclidean distance between two eigen vectors. * \param[in] p_src the first eigen vector * \param[in] p_tgt the second eigen vector */ inline double l2(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt) { return ((p_src - p_tgt).norm()); } /** \brief Compute the squared Euclidean distance between two eigen vectors. * \param[in] p_src the first eigen vector * \param[in] p_tgt the second eigen vector */ inline double l2Sqr(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt) { return ((p_src - p_tgt).squaredNorm()); } } // namespace distances } // namespace pcl