/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include /////////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PapazovHV::initialize () { //clear stuff recognition_models_.clear (); graph_id_model_map_.clear (); conflict_graph_.clear (); explained_by_RM_.clear (); points_explained_by_rm_.clear (); // initialize mask... mask_.resize (complete_models_.size ()); for (std::size_t i = 0; i < complete_models_.size (); i++) mask_[i] = true; // initialize explained_by_RM explained_by_RM_.resize (scene_cloud_downsampled_->size ()); points_explained_by_rm_.resize (scene_cloud_downsampled_->size ()); // initialize model for (std::size_t m = 0; m < complete_models_.size (); m++) { RecognitionModelPtr recog_model (new RecognitionModel); // voxelize model cloud recog_model->cloud_.reset (new pcl::PointCloud); recog_model->complete_cloud_.reset (new pcl::PointCloud); recog_model->id_ = static_cast (m); pcl::VoxelGrid voxel_grid; voxel_grid.setInputCloud (visible_models_[m]); voxel_grid.setLeafSize (resolution_, resolution_, resolution_); voxel_grid.filter (*(recog_model->cloud_)); pcl::VoxelGrid voxel_grid_complete; voxel_grid_complete.setInputCloud (complete_models_[m]); voxel_grid_complete.setLeafSize (resolution_, resolution_, resolution_); voxel_grid_complete.filter (*(recog_model->complete_cloud_)); std::vector explained_indices; std::vector outliers; pcl::Indices nn_indices; std::vector nn_distances; for (std::size_t i = 0; i < recog_model->cloud_->size (); i++) { if (!scene_downsampled_tree_->radiusSearch ((*recog_model->cloud_)[i], inliers_threshold_, nn_indices, nn_distances, std::numeric_limits::max ())) { outliers.push_back (static_cast (i)); } else { for (std::size_t k = 0; k < nn_distances.size (); k++) { explained_indices.push_back (nn_indices[k]); //nn_indices[k] points to the scene } } } std::sort (explained_indices.begin (), explained_indices.end ()); explained_indices.erase (std::unique (explained_indices.begin (), explained_indices.end ()), explained_indices.end ()); recog_model->bad_information_ = static_cast (outliers.size ()); if ((static_cast (recog_model->bad_information_) / static_cast (recog_model->complete_cloud_->size ())) <= penalty_threshold_ && (static_cast (explained_indices.size ()) / static_cast (recog_model->complete_cloud_->size ())) >= support_threshold_) { recog_model->explained_ = explained_indices; recognition_models_.push_back (recog_model); // update explained_by_RM_, add 1 for (const int &explained_index : explained_indices) { explained_by_RM_[explained_index]++; points_explained_by_rm_[explained_index].push_back (recog_model); } } else { mask_[m] = false; // the model didn't survive the sequential check... } } } /////////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PapazovHV::nonMaximaSuppresion () { // iterate over all vertices of the graph and check if they have a better neighbour, then remove that vertex using VertexIterator = typename boost::graph_traits::vertex_iterator; VertexIterator vi, vi_end; boost::tie (vi, vi_end) = boost::vertices (conflict_graph_); for (auto next = vi; next != vi_end; next++) { const typename Graph::vertex_descriptor v = boost::vertex (*next, conflict_graph_); typename boost::graph_traits::adjacency_iterator ai; typename boost::graph_traits::adjacency_iterator ai_end; auto current = std::static_pointer_cast (graph_id_model_map_[int (v)]); bool a_better_one = false; for (boost::tie (ai, ai_end) = boost::adjacent_vertices (v, conflict_graph_); (ai != ai_end) && !a_better_one; ++ai) { auto neighbour = std::static_pointer_cast (graph_id_model_map_[int (*ai)]); if ((neighbour->explained_.size () >= current->explained_.size ()) && mask_[neighbour->id_]) { a_better_one = true; } } if (a_better_one) { mask_[current->id_] = false; } } } /////////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PapazovHV::buildConflictGraph () { // create vertices for the graph for (std::size_t i = 0; i < (recognition_models_.size ()); i++) { const typename Graph::vertex_descriptor v = boost::add_vertex (recognition_models_[i], conflict_graph_); graph_id_model_map_[int (v)] = std::static_pointer_cast (recognition_models_[i]); } // iterate over the remaining models and check for each one if there is a conflict with another one for (std::size_t i = 0; i < recognition_models_.size (); i++) { for (std::size_t j = i; j < recognition_models_.size (); j++) { if (i != j) { float n_conflicts = 0.f; // count scene points explained by both models for (std::size_t k = 0; k < explained_by_RM_.size (); k++) { if (explained_by_RM_[k] > 1) { // this point could be a conflict bool i_found = false; bool j_found = false; bool both_found = false; for (std::size_t kk = 0; (kk < points_explained_by_rm_[k].size ()) && !both_found; kk++) { if (points_explained_by_rm_[k][kk]->id_ == recognition_models_[i]->id_) i_found = true; if (points_explained_by_rm_[k][kk]->id_ == recognition_models_[j]->id_) j_found = true; if (i_found && j_found) both_found = true; } if (both_found) n_conflicts += 1.f; } } // check if number of points is big enough to create a conflict bool add_conflict = false; add_conflict = ((n_conflicts / static_cast (recognition_models_[i]->complete_cloud_->size ())) > conflict_threshold_size_) || ((n_conflicts / static_cast (recognition_models_[j]->complete_cloud_->size ())) > conflict_threshold_size_); if (add_conflict) { boost::add_edge (i, j, conflict_graph_); } } } } } /////////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PapazovHV::verify () { initialize (); buildConflictGraph (); nonMaximaSuppresion (); } #define PCL_INSTANTIATE_PapazovHV(T1,T2) template class PCL_EXPORTS pcl::PapazovHV;