/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id: cvfh.h 4936 2012-03-07 11:12:45Z aaldoma $ * */ #pragma once #include namespace pcl { /** \brief OURCVFHEstimation estimates the Oriented, Unique and Repetable Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given * point cloud dataset given XYZ data and normals, as presented in: * - OUR-CVFH – Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation * A. Aldoma, F. Tombari, R.B. Rusu and M. Vincze * DAGM-OAGM 2012 * Graz, Austria * The suggested PointOutT is pcl::VFHSignature308. * * \author Aitor Aldoma * \ingroup features */ template class OURCVFHEstimation : public FeatureFromNormals { public: using Ptr = shared_ptr >; using ConstPtr = shared_ptr >; using Feature::feature_name_; using Feature::getClassName; using Feature::indices_; using Feature::k_; using Feature::search_radius_; using Feature::surface_; using FeatureFromNormals::normals_; using PointCloudOut = typename Feature::PointCloudOut; using KdTreePtr = typename pcl::search::Search::Ptr; using PointInTPtr = typename pcl::PointCloud::Ptr; /** \brief Empty constructor. */ OURCVFHEstimation () : vpx_ (0), vpy_ (0), vpz_ (0), leaf_size_ (0.005f), normalize_bins_ (false), curv_threshold_ (0.03f), cluster_tolerance_ (leaf_size_ * 3), eps_angle_threshold_ (0.125f), min_points_ (50), radius_normals_ (leaf_size_ * 3) { search_radius_ = 0; k_ = 1; feature_name_ = "OURCVFHEstimation"; refine_clusters_ = 1.f; min_axis_value_ = 0.925f; axis_ratio_ = 0.8f; } ; /** \brief Creates an affine transformation from the RF axes * \param[in] evx the x-axis * \param[in] evy the y-axis * \param[in] evz the z-axis * \param[out] transformPC the resulting transformation * \param[in] center_mat 4x4 matrix concatenated to the resulting transformation */ inline Eigen::Matrix4f createTransFromAxes (Eigen::Vector3f & evx, Eigen::Vector3f & evy, Eigen::Vector3f & evz, Eigen::Affine3f & transformPC, Eigen::Matrix4f & center_mat) { Eigen::Matrix4f trans; trans.setIdentity (4, 4); trans (0, 0) = evx (0, 0); trans (1, 0) = evx (1, 0); trans (2, 0) = evx (2, 0); trans (0, 1) = evy (0, 0); trans (1, 1) = evy (1, 0); trans (2, 1) = evy (2, 0); trans (0, 2) = evz (0, 0); trans (1, 2) = evz (1, 0); trans (2, 2) = evz (2, 0); Eigen::Matrix4f homMatrix = Eigen::Matrix4f (); homMatrix.setIdentity (4, 4); homMatrix = transformPC.matrix (); Eigen::Matrix4f trans_copy = trans.inverse (); trans = trans_copy * center_mat * homMatrix; return trans; } /** \brief Computes SGURF and the shape distribution based on the selected SGURF * \param[in] processed the input cloud * \param[out] output the resulting signature * \param[in] cluster_indices the indices of the stable cluster */ void computeRFAndShapeDistribution (PointInTPtr & processed, PointCloudOut &output, std::vector & cluster_indices); /** \brief Computes SGURF * \param[in] centroid the centroid of the cluster * \param[in] normal_centroid the average of the normals * \param[in] processed the input cloud * \param[out] transformations the transformations aligning the cloud to the SGURF axes * \param[out] grid the cloud transformed internally * \param[in] indices the indices of the stable cluster */ bool sgurf (Eigen::Vector3f & centroid, Eigen::Vector3f & normal_centroid, PointInTPtr & processed, std::vector > & transformations, PointInTPtr & grid, pcl::PointIndices & indices); /** \brief Removes normals with high curvature caused by real edges or noisy data * \param[in] cloud pointcloud to be filtered * \param[in] indices_to_use * \param[out] indices_out the indices of the points with higher curvature than threshold * \param[out] indices_in the indices of the remaining points after filtering * \param[in] threshold threshold value for curvature */ void filterNormalsWithHighCurvature (const pcl::PointCloud & cloud, pcl::Indices & indices_to_use, pcl::Indices &indices_out, pcl::Indices &indices_in, float threshold); /** \brief Set the viewpoint. * \param[in] vpx the X coordinate of the viewpoint * \param[in] vpy the Y coordinate of the viewpoint * \param[in] vpz the Z coordinate of the viewpoint */ inline void setViewPoint (float vpx, float vpy, float vpz) { vpx_ = vpx; vpy_ = vpy; vpz_ = vpz; } /** \brief Set the radius used to compute normals * \param[in] radius_normals the radius */ inline void setRadiusNormals (float radius_normals) { radius_normals_ = radius_normals; } /** \brief Get the viewpoint. * \param[out] vpx the X coordinate of the viewpoint * \param[out] vpy the Y coordinate of the viewpoint * \param[out] vpz the Z coordinate of the viewpoint */ inline void getViewPoint (float &vpx, float &vpy, float &vpz) { vpx = vpx_; vpy = vpy_; vpz = vpz_; } /** \brief Get the centroids used to compute different CVFH descriptors * \param[out] centroids vector to hold the centroids */ inline void getCentroidClusters (std::vector > & centroids) { for (std::size_t i = 0; i < centroids_dominant_orientations_.size (); ++i) centroids.push_back (centroids_dominant_orientations_[i]); } /** \brief Get the normal centroids used to compute different CVFH descriptors * \param[out] centroids vector to hold the normal centroids */ inline void getCentroidNormalClusters (std::vector > & centroids) { for (std::size_t i = 0; i < dominant_normals_.size (); ++i) centroids.push_back (dominant_normals_[i]); } /** \brief Sets max. Euclidean distance between points to be added to the cluster * \param[in] d the maximum Euclidean distance */ inline void setClusterTolerance (float d) { cluster_tolerance_ = d; } /** \brief Sets max. deviation of the normals between two points so they can be clustered together * \param[in] d the maximum deviation */ inline void setEPSAngleThreshold (float d) { eps_angle_threshold_ = d; } /** \brief Sets curvature threshold for removing normals * \param[in] d the curvature threshold */ inline void setCurvatureThreshold (float d) { curv_threshold_ = d; } /** \brief Set minimum amount of points for a cluster to be considered * \param[in] min the minimum amount of points to be set */ inline void setMinPoints (std::size_t min) { min_points_ = min; } /** \brief Sets whether the signatures should be normalized or not * \param[in] normalize true if normalization is required, false otherwise */ inline void setNormalizeBins (bool normalize) { normalize_bins_ = normalize; } /** \brief Gets the indices of the original point cloud used to compute the signatures * \param[out] indices vector of point indices */ inline void getClusterIndices (std::vector & indices) { indices = clusters_; } /** \brief Gets the number of non-disambiguable axes that correspond to each centroid * \param[out] cluster_axes vector mapping each centroid to the number of signatures */ inline void getClusterAxes (std::vector & cluster_axes) { cluster_axes = cluster_axes_; } /** \brief Sets the refinement factor for the clusters * \param[in] rc the factor used to decide if a point is used to estimate a stable cluster */ void setRefineClusters (float rc) { refine_clusters_ = rc; } /** \brief Returns the transformations aligning the point cloud to the corresponding SGURF * \param[out] trans vector of transformations */ void getTransforms (std::vector > & trans) { trans = transforms_; } /** \brief Returns a boolean vector indicating of the transformation obtained by getTransforms() represents * a valid SGURF * \param[out] valid vector of booleans */ void getValidTransformsVec (std::vector & valid) { valid = valid_transforms_; } /** \brief Sets the min axis ratio between the SGURF axes to decide if disambiguition is feasible * \param[in] f the ratio between axes */ void setAxisRatio (float f) { axis_ratio_ = f; } /** \brief Sets the min disambiguition axis value to generate several SGURFs for the cluster when disambiguition is difficult * \param[in] f the min axis value */ void setMinAxisValue (float f) { min_axis_value_ = f; } /** \brief Overloaded computed method from pcl::Feature. * \param[out] output the resultant point cloud model dataset containing the estimated features */ void compute (PointCloudOut &output); private: /** \brief Values describing the viewpoint ("pinhole" camera model assumed). * By default, the viewpoint is set to 0,0,0. */ float vpx_, vpy_, vpz_; /** \brief Size of the voxels after voxel gridding. IMPORTANT: Must match the voxel * size of the training data or the normalize_bins_ flag must be set to true. */ float leaf_size_; /** \brief Whether to normalize the signatures or not. Default: false. */ bool normalize_bins_; /** \brief Curvature threshold for removing normals. */ float curv_threshold_; /** \brief allowed Euclidean distance between points to be added to the cluster. */ float cluster_tolerance_; /** \brief deviation of the normals between two points so they can be clustered together. */ float eps_angle_threshold_; /** \brief Minimum amount of points in a clustered region to be considered stable for CVFH * computation. */ std::size_t min_points_; /** \brief Radius for the normals computation. */ float radius_normals_; /** \brief Factor for the cluster refinement */ float refine_clusters_; std::vector > transforms_; std::vector valid_transforms_; float axis_ratio_; float min_axis_value_; /** \brief Estimate the OUR-CVFH descriptors at * a set of points given by using the surface in * setSearchSurface () * * \param[out] output the resultant point cloud model dataset that contains the OUR-CVFH * feature estimates */ void computeFeature (PointCloudOut &output) override; /** \brief Region growing method using Euclidean distances and neighbors normals to * add points to a region. * \param[in] cloud point cloud to split into regions * \param[in] normals are the normals of cloud * \param[in] tolerance is the allowed Euclidean distance between points to be added to * the cluster * \param[in] tree is the spatial search structure for nearest neighbour search * \param[out] clusters vector of indices representing the clustered regions * \param[in] eps_angle deviation of the normals between two points so they can be * clustered together * \param[in] min_pts_per_cluster minimum cluster size. (default: 1 point) * \param[in] max_pts_per_cluster maximum cluster size. (default: all the points) */ void extractEuclideanClustersSmooth (const pcl::PointCloud &cloud, const pcl::PointCloud &normals, float tolerance, const pcl::search::Search::Ptr &tree, std::vector &clusters, double eps_angle, unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits::max) ()); protected: /** \brief Centroids that were used to compute different OUR-CVFH descriptors */ std::vector > centroids_dominant_orientations_; /** \brief Normal centroids that were used to compute different OUR-CVFH descriptors */ std::vector > dominant_normals_; /** \brief Indices to the points representing the stable clusters */ std::vector clusters_; /** \brief Mapping from clusters to OUR-CVFH descriptors */ std::vector cluster_axes_; }; } #ifdef PCL_NO_PRECOMPILE #include #endif