/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id: feature.h 2784 2011-10-15 22:05:38Z aichim $ */ #pragma once #include #include namespace pcl { template struct IntegralImageTypeTraits { using Type = DataType; using IntegralType = DataType; }; template <> struct IntegralImageTypeTraits { using Type = float; using IntegralType = double; }; template <> struct IntegralImageTypeTraits { using Type = char; using IntegralType = int; }; template <> struct IntegralImageTypeTraits { using Type = short; using IntegralType = long; }; template <> struct IntegralImageTypeTraits { using Type = unsigned short; using IntegralType = unsigned long; }; template <> struct IntegralImageTypeTraits { using Type = unsigned char; using IntegralType = unsigned int; }; template <> struct IntegralImageTypeTraits { using Type = int; using IntegralType = long; }; template <> struct IntegralImageTypeTraits { using Type = unsigned int; using IntegralType = unsigned long; }; /** \brief Determines an integral image representation for a given organized data array * \author Suat Gedikli */ template class IntegralImage2D { public: using Ptr = shared_ptr>; using ConstPtr = shared_ptr>; static const unsigned second_order_size = (Dimension * (Dimension + 1)) >> 1; using ElementType = Eigen::Matrix::IntegralType, Dimension, 1>; using SecondOrderType = Eigen::Matrix::IntegralType, second_order_size, 1>; /** \brief Constructor for an Integral Image * \param[in] compute_second_order_integral_images set to true if we want to compute a second order image */ IntegralImage2D (bool compute_second_order_integral_images) : first_order_integral_image_ (), second_order_integral_image_ (), width_ (1), height_ (1), compute_second_order_integral_images_ (compute_second_order_integral_images) { } /** \brief Destructor */ virtual ~IntegralImage2D () { } /** \brief sets the computation for second order integral images on or off. * \param compute_second_order_integral_images */ void setSecondOrderComputation (bool compute_second_order_integral_images); /** \brief Set the input data to compute the integral image for * \param[in] data the input data * \param[in] width the width of the data * \param[in] height the height of the data * \param[in] element_stride the element stride of the data * \param[in] row_stride the row stride of the data */ void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride); /** \brief Compute the first order sum within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the first order sum within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; /** \brief Compute the second order sum within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the second order sum within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; /** \brief Compute the number of finite elements within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the number of finite elements within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; private: using InputType = Eigen::Matrix::Type, Dimension, 1>; /** \brief Compute the actual integral image data * \param[in] data the input data * \param[in] element_stride the element stride of the data * \param[in] row_stride the row stride of the data */ void computeIntegralImages (const DataType * data, unsigned row_stride, unsigned element_stride); std::vector > first_order_integral_image_; std::vector > second_order_integral_image_; std::vector finite_values_integral_image_; /** \brief The width of the 2d input data array */ unsigned width_; /** \brief The height of the 2d input data array */ unsigned height_; /** \brief Indicates whether second order integral images are available **/ bool compute_second_order_integral_images_; }; /** * \brief partial template specialization for integral images with just one channel. */ template class IntegralImage2D { public: using Ptr = shared_ptr>; using ConstPtr = shared_ptr>; static const unsigned second_order_size = 1; using ElementType = typename IntegralImageTypeTraits::IntegralType; using SecondOrderType = typename IntegralImageTypeTraits::IntegralType; /** \brief Constructor for an Integral Image * \param[in] compute_second_order_integral_images set to true if we want to compute a second order image */ IntegralImage2D (bool compute_second_order_integral_images) : first_order_integral_image_ (), second_order_integral_image_ (), width_ (1), height_ (1), compute_second_order_integral_images_ (compute_second_order_integral_images) { } /** \brief Destructor */ virtual ~IntegralImage2D () { } /** \brief Set the input data to compute the integral image for * \param[in] data the input data * \param[in] width the width of the data * \param[in] height the height of the data * \param[in] element_stride the element stride of the data * \param[in] row_stride the row stride of the data */ void setInput (const DataType * data, unsigned width, unsigned height, unsigned element_stride, unsigned row_stride); /** \brief Compute the first order sum within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline ElementType getFirstOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the first order sum within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline ElementType getFirstOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; /** \brief Compute the second order sum within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline SecondOrderType getSecondOrderSum (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the second order sum within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline SecondOrderType getSecondOrderSumSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; /** \brief Compute the number of finite elements within a given rectangle * \param[in] start_x x position of rectangle * \param[in] start_y y position of rectangle * \param[in] width width of rectangle * \param[in] height height of rectangle */ inline unsigned getFiniteElementsCount (unsigned start_x, unsigned start_y, unsigned width, unsigned height) const; /** \brief Compute the number of finite elements within a given rectangle * \param[in] start_x x position of the start of the rectangle * \param[in] start_y x position of the start of the rectangle * \param[in] end_x x position of the end of the rectangle * \param[in] end_y x position of the end of the rectangle */ inline unsigned getFiniteElementsCountSE (unsigned start_x, unsigned start_y, unsigned end_x, unsigned end_y) const; private: // using InputType = typename IntegralImageTypeTraits::Type; /** \brief Compute the actual integral image data * \param[in] data the input data * \param[in] element_stride the element stride of the data * \param[in] row_stride the row stride of the data */ void computeIntegralImages (const DataType * data, unsigned row_stride, unsigned element_stride); std::vector > first_order_integral_image_; std::vector > second_order_integral_image_; std::vector finite_values_integral_image_; /** \brief The width of the 2d input data array */ unsigned width_; /** \brief The height of the 2d input data array */ unsigned height_; /** \brief Indicates whether second order integral images are available **/ bool compute_second_order_integral_images_; }; } #include