/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #ifndef PCL_FEATURES_IMPL_PPFRGB_H_ #define PCL_FEATURES_IMPL_PPFRGB_H_ #include #include ////////////////////////////////////////////////////////////////////////////////////////////// template pcl::PPFRGBEstimation::PPFRGBEstimation () : FeatureFromNormals () { feature_name_ = "PPFRGBEstimation"; // Slight hack in order to pass the check for the presence of a search method in Feature::initCompute () Feature::tree_.reset (new pcl::search::KdTree ()); Feature::search_radius_ = 1.0f; } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PPFRGBEstimation::computeFeature (PointCloudOut &output) { // Initialize output container - overwrite the sizes done by Feature::initCompute () output.resize (indices_->size () * input_->size ()); output.height = 1; output.width = output.size (); // Compute point pair features for every pair of points in the cloud for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i) { std::size_t i = (*indices_)[index_i]; for (std::size_t j = 0 ; j < input_->size (); ++j) { PointOutT p; if (i != j) { if (pcl::computeRGBPairFeatures ((*input_)[i].getVector4fMap (), (*normals_)[i].getNormalVector4fMap (), (*input_)[i].getRGBVector4i (), (*input_)[j].getVector4fMap (), (*normals_)[j].getNormalVector4fMap (), (*input_)[j].getRGBVector4i (), p.f1, p.f2, p.f3, p.f4, p.r_ratio, p.g_ratio, p.b_ratio)) { // Calculate alpha_m angle Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (), model_reference_normal = (*normals_)[i].getNormalVector3fMap (), model_point = (*input_)[j].getVector3fMap (); Eigen::AngleAxisf rotation_mg (std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ())), model_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ()); Eigen::Affine3f transform_mg = Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg; Eigen::Vector3f model_point_transformed = transform_mg * model_point; float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1)); if (std::sin (angle) * model_point_transformed(2) < 0.0f) angle *= (-1); p.alpha_m = -angle; } else { PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j); p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = p.r_ratio = p.g_ratio = p.b_ratio = 0.f; } } // Do not calculate the feature for identity pairs (i, i) as they are not used // in the following computations else p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = p.r_ratio = p.g_ratio = p.b_ratio = 0.f; output[index_i*input_->size () + j] = p; } } } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// template pcl::PPFRGBRegionEstimation::PPFRGBRegionEstimation () : FeatureFromNormals () { feature_name_ = "PPFRGBEstimation"; } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::PPFRGBRegionEstimation::computeFeature (PointCloudOut &output) { PCL_INFO ("before computing output size: %u\n", output.size ()); output.resize (indices_->size ()); for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i) { auto i = (*indices_)[index_i]; pcl::Indices nn_indices; std::vector nn_distances; tree_->radiusSearch (i, static_cast (search_radius_), nn_indices, nn_distances); PointOutT average_feature_nn; average_feature_nn.alpha_m = 0; average_feature_nn.f1 = average_feature_nn.f2 = average_feature_nn.f3 = average_feature_nn.f4 = average_feature_nn.r_ratio = average_feature_nn.g_ratio = average_feature_nn.b_ratio = 0.0f; for (const auto &j : nn_indices) { if (i != j) { float f1, f2, f3, f4, r_ratio, g_ratio, b_ratio; if (pcl::computeRGBPairFeatures ((*input_)[i].getVector4fMap (), (*normals_)[i].getNormalVector4fMap (), (*input_)[i].getRGBVector4i (), (*input_)[j].getVector4fMap (), (*normals_)[j].getNormalVector4fMap (), (*input_)[j].getRGBVector4i (), f1, f2, f3, f4, r_ratio, g_ratio, b_ratio)) { average_feature_nn.f1 += f1; average_feature_nn.f2 += f2; average_feature_nn.f3 += f3; average_feature_nn.f4 += f4; average_feature_nn.r_ratio += r_ratio; average_feature_nn.g_ratio += g_ratio; average_feature_nn.b_ratio += b_ratio; } else { PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j); } } } float normalization_factor = static_cast (nn_indices.size ()); average_feature_nn.f1 /= normalization_factor; average_feature_nn.f2 /= normalization_factor; average_feature_nn.f3 /= normalization_factor; average_feature_nn.f4 /= normalization_factor; average_feature_nn.r_ratio /= normalization_factor; average_feature_nn.g_ratio /= normalization_factor; average_feature_nn.b_ratio /= normalization_factor; output[index_i] = average_feature_nn; } PCL_INFO ("Output size: %zu\n", static_cast(output.size ())); } #define PCL_INSTANTIATE_PPFRGBEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFRGBEstimation; #define PCL_INSTANTIATE_PPFRGBRegionEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFRGBRegionEstimation; #endif // PCL_FEATURES_IMPL_PPFRGB_H_