/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_ #define PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_ #include #include ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::MomentInvariantsEstimation::computePointMomentInvariants ( const pcl::PointCloud &cloud, const pcl::Indices &indices, float &j1, float &j2, float &j3) { // Estimate the XYZ centroid compute3DCentroid (cloud, indices, xyz_centroid_); // Initialize the centralized moments float mu200 = 0, mu020 = 0, mu002 = 0, mu110 = 0, mu101 = 0, mu011 = 0; // Iterate over the nearest neighbors set for (const auto &index : indices) { // Demean the points temp_pt_[0] = cloud[index].x - xyz_centroid_[0]; temp_pt_[1] = cloud[index].y - xyz_centroid_[1]; temp_pt_[2] = cloud[index].z - xyz_centroid_[2]; mu200 += temp_pt_[0] * temp_pt_[0]; mu020 += temp_pt_[1] * temp_pt_[1]; mu002 += temp_pt_[2] * temp_pt_[2]; mu110 += temp_pt_[0] * temp_pt_[1]; mu101 += temp_pt_[0] * temp_pt_[2]; mu011 += temp_pt_[1] * temp_pt_[2]; } // Save the moment invariants j1 = mu200 + mu020 + mu002; j2 = mu200*mu020 + mu200*mu002 + mu020*mu002 - mu110*mu110 - mu101*mu101 - mu011*mu011; j3 = mu200*mu020*mu002 + 2*mu110*mu101*mu011 - mu002*mu110*mu110 - mu020*mu101*mu101 - mu200*mu011*mu011; } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::MomentInvariantsEstimation::computePointMomentInvariants ( const pcl::PointCloud &cloud, float &j1, float &j2, float &j3) { // Estimate the XYZ centroid compute3DCentroid (cloud, xyz_centroid_); // Initialize the centralized moments float mu200 = 0, mu020 = 0, mu002 = 0, mu110 = 0, mu101 = 0, mu011 = 0; // Iterate over the nearest neighbors set for (const auto& point: cloud.points) { // Demean the points temp_pt_[0] = point.x - xyz_centroid_[0]; temp_pt_[1] = point.y - xyz_centroid_[1]; temp_pt_[2] = point.z - xyz_centroid_[2]; mu200 += temp_pt_[0] * temp_pt_[0]; mu020 += temp_pt_[1] * temp_pt_[1]; mu002 += temp_pt_[2] * temp_pt_[2]; mu110 += temp_pt_[0] * temp_pt_[1]; mu101 += temp_pt_[0] * temp_pt_[2]; mu011 += temp_pt_[1] * temp_pt_[2]; } // Save the moment invariants j1 = mu200 + mu020 + mu002; j2 = mu200*mu020 + mu200*mu002 + mu020*mu002 - mu110*mu110 - mu101*mu101 - mu011*mu011; j3 = mu200*mu020*mu002 + 2*mu110*mu101*mu011 - mu002*mu110*mu110 - mu020*mu101*mu101 - mu200*mu011*mu011; } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::MomentInvariantsEstimation::computeFeature (PointCloudOut &output) { // Allocate enough space to hold the results // \note This resize is irrelevant for a radiusSearch (). pcl::Indices nn_indices (k_); std::vector nn_dists (k_); output.is_dense = true; // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense if (input_->is_dense) { // Iterating over the entire index vector for (std::size_t idx = 0; idx < indices_->size (); ++idx) { if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0) { output[idx].j1 = output[idx].j2 = output[idx].j3 = std::numeric_limits::quiet_NaN (); output.is_dense = false; continue; } computePointMomentInvariants (*surface_, nn_indices, output[idx].j1, output[idx].j2, output[idx].j3); } } else { // Iterating over the entire index vector for (std::size_t idx = 0; idx < indices_->size (); ++idx) { if (!isFinite ((*input_)[(*indices_)[idx]]) || this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0) { output[idx].j1 = output[idx].j2 = output[idx].j3 = std::numeric_limits::quiet_NaN (); output.is_dense = false; continue; } computePointMomentInvariants (*surface_, nn_indices, output[idx].j1, output[idx].j2, output[idx].j3); } } } #define PCL_INSTANTIATE_MomentInvariantsEstimation(T,NT) template class PCL_EXPORTS pcl::MomentInvariantsEstimation; #endif // PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_