/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_FEATURES_IMPL_INTENSITY_SPIN_H_ #define PCL_FEATURES_IMPL_INTENSITY_SPIN_H_ #include ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::IntensitySpinEstimation::computeIntensitySpinImage ( const PointCloudIn &cloud, float radius, float sigma, int k, const pcl::Indices &indices, const std::vector &squared_distances, Eigen::MatrixXf &intensity_spin_image) { // Determine the number of bins to use based on the size of intensity_spin_image int nr_distance_bins = static_cast (intensity_spin_image.cols ()); int nr_intensity_bins = static_cast (intensity_spin_image.rows ()); // Find the min and max intensity values in the given neighborhood float min_intensity = std::numeric_limits::max (); float max_intensity = -std::numeric_limits::max (); for (int idx = 0; idx < k; ++idx) { min_intensity = (std::min) (min_intensity, cloud[indices[idx]].intensity); max_intensity = (std::max) (max_intensity, cloud[indices[idx]].intensity); } float constant = 1.0f / (2.0f * sigma_ * sigma_); // Compute the intensity spin image intensity_spin_image.setZero (); for (int idx = 0; idx < k; ++idx) { // Normalize distance and intensity values to: 0.0 <= d,i < nr_distance_bins,nr_intensity_bins const float eps = std::numeric_limits::epsilon (); float d = static_cast (nr_distance_bins) * std::sqrt (squared_distances[idx]) / (radius + eps); float i = static_cast (nr_intensity_bins) * (cloud[indices[idx]].intensity - min_intensity) / (max_intensity - min_intensity + eps); if (sigma == 0) { // If sigma is zero, update the histogram with no smoothing kernel int d_idx = static_cast (d); int i_idx = static_cast (i); intensity_spin_image (i_idx, d_idx) += 1; } else { // Compute the bin indices that need to be updated (+/- 3 standard deviations) int d_idx_min = (std::max)(static_cast (std::floor (d - 3*sigma)), 0); int d_idx_max = (std::min)(static_cast (std::ceil (d + 3*sigma)), nr_distance_bins - 1); int i_idx_min = (std::max)(static_cast (std::floor (i - 3*sigma)), 0); int i_idx_max = (std::min)(static_cast (std::ceil (i + 3*sigma)), nr_intensity_bins - 1); // Update the appropriate bins of the histogram for (int i_idx = i_idx_min; i_idx <= i_idx_max; ++i_idx) { for (int d_idx = d_idx_min; d_idx <= d_idx_max; ++d_idx) { // Compute a "soft" update weight based on the distance between the point and the bin float w = std::exp (-powf (d - static_cast (d_idx), 2.0f) * constant - powf (i - static_cast (i_idx), 2.0f) * constant); intensity_spin_image (i_idx, d_idx) += w; } } } } } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::IntensitySpinEstimation::computeFeature (PointCloudOut &output) { // Make sure a search radius is set if (search_radius_ == 0.0) { PCL_ERROR ("[pcl::%s::computeFeature] The search radius must be set before computing the feature!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } // Make sure the spin image has valid dimensions if (nr_intensity_bins_ <= 0) { PCL_ERROR ("[pcl::%s::computeFeature] The number of intensity bins must be greater than zero!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } if (nr_distance_bins_ <= 0) { PCL_ERROR ("[pcl::%s::computeFeature] The number of distance bins must be greater than zero!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } Eigen::MatrixXf intensity_spin_image (nr_intensity_bins_, nr_distance_bins_); // Allocate enough space to hold the radiusSearch results pcl::Indices nn_indices (surface_->size ()); std::vector nn_dist_sqr (surface_->size ()); output.is_dense = true; // Iterating over the entire index vector for (std::size_t idx = 0; idx < indices_->size (); ++idx) { // Find neighbors within the search radius // TODO: do we want to use searchForNeigbors instead? int k = tree_->radiusSearch ((*indices_)[idx], search_radius_, nn_indices, nn_dist_sqr); if (k == 0) { for (int bin = 0; bin < nr_intensity_bins_ * nr_distance_bins_; ++bin) output[idx].histogram[bin] = std::numeric_limits::quiet_NaN (); output.is_dense = false; continue; } // Compute the intensity spin image computeIntensitySpinImage (*surface_, static_cast (search_radius_), sigma_, k, nn_indices, nn_dist_sqr, intensity_spin_image); // Copy into the resultant cloud std::size_t bin = 0; for (Eigen::Index bin_j = 0; bin_j < intensity_spin_image.cols (); ++bin_j) for (Eigen::Index bin_i = 0; bin_i < intensity_spin_image.rows (); ++bin_i) output[idx].histogram[bin++] = intensity_spin_image (bin_i, bin_j); } } #define PCL_INSTANTIATE_IntensitySpinEstimation(T,NT) template class PCL_EXPORTS pcl::IntensitySpinEstimation; #endif // PCL_FEATURES_IMPL_INTENSITY_SPIN_H_