/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2016-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * */ #ifndef PCL_FEATURES_IMPL_FLARE_H_ #define PCL_FEATURES_IMPL_FLARE_H_ #include #include ////////////////////////////////////////////////////////////////////////////////////////////// template bool pcl::FLARELocalReferenceFrameEstimation::initCompute () { if (!FeatureFromNormals::initCompute ()) { PCL_ERROR ("[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ()); return (false); } if (tangent_radius_ == 0.0f) { PCL_ERROR ("[pcl::%s::initCompute] tangent_radius_ not set.\n", getClassName ().c_str ()); return (false); } // If no search sampled_surface_ has been defined, use the surface_ dataset as the search sampled_surface_ itself if (!sampled_surface_) { fake_sampled_surface_ = true; sampled_surface_ = surface_; if (sampled_tree_) { PCL_WARN ("[pcl::%s::initCompute] sampled_surface_ is not set even if sampled_tree_ is already set.", getClassName ().c_str ()); PCL_WARN ("sampled_tree_ will be rebuilt from surface_. Use sampled_surface_.\n"); } } // Check if a space search locator was given for sampled_surface_ if (!sampled_tree_) { if (sampled_surface_->isOrganized () && surface_->isOrganized () && input_->isOrganized ()) sampled_tree_.reset (new pcl::search::OrganizedNeighbor ()); else sampled_tree_.reset (new pcl::search::KdTree (false)); } if (sampled_tree_->getInputCloud () != sampled_surface_) // Make sure the tree searches the sampled surface sampled_tree_->setInputCloud (sampled_surface_); return (true); } ////////////////////////////////////////////////////////////////////////////////////////////// template bool pcl::FLARELocalReferenceFrameEstimation::deinitCompute () { // Reset the surface if (fake_surface_) { surface_.reset (); fake_surface_ = false; } // Reset the sampled surface if (fake_sampled_surface_) { sampled_surface_.reset (); fake_sampled_surface_ = false; } return (true); } ////////////////////////////////////////////////////////////////////////////////////////////// template SignedDistanceT pcl::FLARELocalReferenceFrameEstimation::computePointLRF (const int index, Eigen::Matrix3f &lrf) { Eigen::Vector3f x_axis, y_axis; Eigen::Vector3f fitted_normal; //z_axis //find Z axis //extract support points for the computation of Z axis pcl::Indices neighbours_indices; std::vector neighbours_distances; const std::size_t n_normal_neighbours = this->searchForNeighbors (index, search_parameter_, neighbours_indices, neighbours_distances); if (n_normal_neighbours < static_cast(min_neighbors_for_normal_axis_)) { if (!pcl::isFinite ((*normals_)[index])) { //normal is invalid //setting lrf to NaN lrf.setConstant (std::numeric_limits::quiet_NaN ()); return (std::numeric_limits::max ()); } //set z_axis as the normal of index point fitted_normal = (*normals_)[index].getNormalVector3fMap (); } else { float plane_curvature; normal_estimation_.computePointNormal (*surface_, neighbours_indices, fitted_normal (0), fitted_normal (1), fitted_normal (2), plane_curvature); //disambiguate Z axis with normal mean if (!pcl::flipNormalTowardsNormalsMean (*normals_, neighbours_indices, fitted_normal)) { //all normals in the neighbourood are invalid //setting lrf to NaN lrf.setConstant (std::numeric_limits::quiet_NaN ()); return (std::numeric_limits::max ()); } } //setting LRF Z axis lrf.row (2).matrix () = fitted_normal; //find X axis //extract support points for Rx radius const std::size_t n_tangent_neighbours = sampled_tree_->radiusSearch ((*input_)[index], tangent_radius_, neighbours_indices, neighbours_distances); if (n_tangent_neighbours < static_cast(min_neighbors_for_tangent_axis_)) { //set X axis as a random axis x_axis = pcl::geometry::randomOrthogonalAxis (fitted_normal); y_axis = fitted_normal.cross (x_axis); lrf.row (0).matrix () = x_axis; lrf.row (1).matrix () = y_axis; return (std::numeric_limits::max ()); } //find point with the largest signed distance from tangent plane SignedDistanceT shape_score; SignedDistanceT best_shape_score = -std::numeric_limits::max (); int best_shape_index = -1; Eigen::Vector3f best_margin_point; const float radius2 = tangent_radius_ * tangent_radius_; const float margin_distance2 = margin_thresh_ * margin_thresh_ * radius2; Vector3fMapConst feature_point = (*input_)[index].getVector3fMap (); for (std::size_t curr_neigh = 0; curr_neigh < n_tangent_neighbours; ++curr_neigh) { const int& curr_neigh_idx = neighbours_indices[curr_neigh]; const float& neigh_distance_sqr = neighbours_distances[curr_neigh]; if (neigh_distance_sqr <= margin_distance2) { continue; } //point curr_neigh_idx is inside the ring between marginThresh and Radius shape_score = fitted_normal.dot ((*sampled_surface_)[curr_neigh_idx].getVector3fMap ()); if (shape_score > best_shape_score) { best_shape_index = curr_neigh_idx; best_shape_score = shape_score; } } //for each neighbor if (best_shape_index == -1) { x_axis = pcl::geometry::randomOrthogonalAxis (fitted_normal); y_axis = fitted_normal.cross (x_axis); lrf.row (0).matrix () = x_axis; lrf.row (1).matrix () = y_axis; return (std::numeric_limits::max ()); } //find orthogonal axis directed to best_shape_index point projection on plane with fittedNormal as axis x_axis = pcl::geometry::projectedAsUnitVector (sampled_surface_->at (best_shape_index).getVector3fMap (), feature_point, fitted_normal); y_axis = fitted_normal.cross (x_axis); lrf.row (0).matrix () = x_axis; lrf.row (1).matrix () = y_axis; //z axis already set best_shape_score -= fitted_normal.dot (feature_point); return (best_shape_score); } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::FLARELocalReferenceFrameEstimation::computeFeature (PointCloudOut &output) { //check whether used with search radius or search k-neighbors if (this->getKSearch () != 0) { PCL_ERROR ( "[pcl::%s::computeFeature] Error! Search method set to k-neighborhood. Call setKSearch (0) and setRadiusSearch (radius) to use this class.\n", getClassName ().c_str ()); return; } signed_distances_from_highest_points_.resize (indices_->size ()); for (std::size_t point_idx = 0; point_idx < indices_->size (); ++point_idx) { Eigen::Matrix3f currentLrf; PointOutT &rf = output[point_idx]; signed_distances_from_highest_points_[point_idx] = computePointLRF ((*indices_)[point_idx], currentLrf); if (signed_distances_from_highest_points_[point_idx] == std::numeric_limits::max ()) { output.is_dense = false; } rf.getXAxisVector3fMap () = currentLrf.row (0); rf.getYAxisVector3fMap () = currentLrf.row (1); rf.getZAxisVector3fMap () = currentLrf.row (2); } } #define PCL_INSTANTIATE_FLARELocalReferenceFrameEstimation(T,NT,OutT,SdT) template class PCL_EXPORTS pcl::FLARELocalReferenceFrameEstimation; #endif // PCL_FEATURES_IMPL_FLARE_H_