/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id: cvfh.hpp 5311 2012-03-26 22:02:04Z aaldoma $ * */ #ifndef PCL_FEATURES_IMPL_CRH_H_ #define PCL_FEATURES_IMPL_CRH_H_ #include #include #include ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CRHEstimation::computeFeature (PointCloudOut &output) { // Check if input was set if (!normals_) { PCL_ERROR ("[pcl::%s::computeFeature] No input dataset containing normals was given!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } if (normals_->size () != surface_->size ()) { PCL_ERROR ("[pcl::%s::computeFeature] The number of points in the input dataset differs from the number of points in the dataset containing the normals!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } Eigen::Vector3f plane_normal; plane_normal[0] = -centroid_[0]; plane_normal[1] = -centroid_[1]; plane_normal[2] = -centroid_[2]; Eigen::Vector3f z_vector = Eigen::Vector3f::UnitZ (); plane_normal.normalize (); Eigen::Vector3f axis = plane_normal.cross (z_vector); double rotation = -asin (axis.norm ()); axis.normalize (); int nbins = nbins_; int bin_angle = 360 / nbins; Eigen::Affine3f transformPC (Eigen::AngleAxisf (static_cast (rotation), axis)); pcl::PointCloud grid; grid.resize (indices_->size ()); for (std::size_t i = 0; i < indices_->size (); i++) { grid[i].getVector4fMap () = (*surface_)[(*indices_)[i]].getVector4fMap (); grid[i].getNormalVector4fMap () = (*normals_)[(*indices_)[i]].getNormalVector4fMap (); } pcl::transformPointCloudWithNormals (grid, grid, transformPC); //fill spatial data vector and the zero-initialize or "value-initialize" an array on c++, // the initialization is made with () after the [nbins] std::vector spatial_data(nbins); float sum_w = 0; for (const auto &point : grid.points) { int bin = static_cast ((((std::atan2 (point.normal_y, point.normal_x) + M_PI) * 180 / M_PI) / bin_angle)) % nbins; float w = std::sqrt (point.normal_y * point.normal_y + point.normal_x * point.normal_x); sum_w += w; spatial_data[bin] += w; } for (auto& data: spatial_data) data /= sum_w; std::vector freq_data(nbins / 2 + 1); kiss_fftr_cfg mycfg = kiss_fftr_alloc (nbins, 0, nullptr, nullptr); kiss_fftr (mycfg, spatial_data.data (), freq_data.data ()); for (auto& data: freq_data) { data.r /= freq_data[0].r; data.i /= freq_data[0].r; } output.resize (1); output.width = output.height = 1; output[0].histogram[0] = freq_data[0].r; //dc int k = 1; for (int i = 1; i < (nbins / 2); i++, k += 2) { output[0].histogram[k] = freq_data[i].r; output[0].histogram[k + 1] = freq_data[i].i; } output[0].histogram[nbins - 1] = freq_data[nbins / 2].r; //nyquist } #define PCL_INSTANTIATE_CRHEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::CRHEstimation; #endif // PCL_FEATURES_IMPL_CRH_H_