/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2011, Alexandru-Eugen Ichim * Copyright (c) 2012-, Open Perception, Inc. * Copyright (c) 2013, Martin Szarski * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ */ #ifndef PCL_FEATURES_IMPL_CPPF_H_ #define PCL_FEATURES_IMPL_CPPF_H_ #include ////////////////////////////////////////////////////////////////////////////////////////////// template pcl::CPPFEstimation::CPPFEstimation () : FeatureFromNormals () { feature_name_ = "CPPFEstimation"; // Slight hack in order to pass the check for the presence of a search method in Feature::initCompute () Feature::tree_.reset (new pcl::search::KdTree ()); Feature::search_radius_ = 1.0f; } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CPPFEstimation::computeFeature (PointCloudOut &output) { // Initialize output container output.points.clear (); output.points.reserve (indices_->size () * input_->size ()); output.is_dense = true; // Compute point pair features for every pair of points in the cloud for (const auto& i: *indices_) { for (std::size_t j = 0 ; j < input_->size (); ++j) { PointOutT p; // No need to calculate feature for identity pair (i, j) as they aren't used in future calculations // @TODO: resolve issue with comparison in a better manner if (static_cast(i) != j) { if ( pcl::computeCPPFPairFeature ((*input_)[i].getVector4fMap (), (*normals_)[i].getNormalVector4fMap (), (*input_)[i].getRGBVector4i (), (*input_)[j].getVector4fMap (), (*normals_)[j].getNormalVector4fMap (), (*input_)[j].getRGBVector4i (), p.f1, p.f2, p.f3, p.f4, p.f5, p.f6, p.f7, p.f8, p.f9, p.f10)) { // Calculate alpha_m angle Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (), model_reference_normal = (*normals_)[i].getNormalVector3fMap (), model_point = (*input_)[j].getVector3fMap (); Eigen::AngleAxisf rotation_mg (std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ())), model_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ()); Eigen::Affine3f transform_mg = Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg; Eigen::Vector3f model_point_transformed = transform_mg * model_point; float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1)); if (std::sin (angle) * model_point_transformed(2) < 0.0f) angle *= (-1); p.alpha_m = -angle; } else { PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j); p.f1 = p.f2 = p.f3 = p.f4 = p.f5 = p.f6 = p.f7 = p.f8 = p.f9 = p.f10 = p.alpha_m = std::numeric_limits::quiet_NaN (); output.is_dense = false; } } else { p.f1 = p.f2 = p.f3 = p.f4 = p.f5 = p.f6 = p.f7 = p.f8 = p.f9 = p.f10 = p.alpha_m = std::numeric_limits::quiet_NaN (); output.is_dense = false; } output.push_back (p); } } // overwrite the sizes done by Feature::initCompute () output.height = 1; output.width = output.size (); } #define PCL_INSTANTIATE_CPPFEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::CPPFEstimation; #endif // PCL_FEATURES_IMPL_CPPF_H_