/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #include #include #include // for Search namespace pcl { /** \brief CVFHEstimation estimates the Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given * point cloud dataset containing XYZ data and normals, as presented in: * - CAD-Model Recognition and 6 DOF Pose Estimation * A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, M. Vincze and G. Bradski * ICCV 2011, 3D Representation and Recognition (3dRR11) workshop * Barcelona, Spain, (2011) * * The suggested PointOutT is pcl::VFHSignature308. * * \author Aitor Aldoma * \ingroup features */ template class CVFHEstimation : public FeatureFromNormals { public: using Ptr = shared_ptr >; using ConstPtr = shared_ptr >; using Feature::feature_name_; using Feature::getClassName; using Feature::indices_; using Feature::k_; using Feature::search_radius_; using Feature::surface_; using FeatureFromNormals::normals_; using PointCloudOut = typename Feature::PointCloudOut; using KdTreePtr = typename pcl::search::Search::Ptr; using VFHEstimator = pcl::VFHEstimation; /** \brief Empty constructor. */ CVFHEstimation () : vpx_ (0), vpy_ (0), vpz_ (0), leaf_size_ (0.005f), normalize_bins_ (false), curv_threshold_ (0.03f), cluster_tolerance_ (leaf_size_ * 3), eps_angle_threshold_ (0.125f), min_points_ (50), radius_normals_ (leaf_size_ * 3) { search_radius_ = 0; k_ = 1; feature_name_ = "CVFHEstimation"; } ; /** \brief Removes normals with high curvature caused by real edges or noisy data * \param[in] cloud pointcloud to be filtered * \param[in] indices_to_use the indices to use * \param[out] indices_out the indices of the points with higher curvature than threshold * \param[out] indices_in the indices of the remaining points after filtering * \param[in] threshold threshold value for curvature */ void filterNormalsWithHighCurvature (const pcl::PointCloud & cloud, pcl::Indices & indices_to_use, pcl::Indices &indices_out, pcl::Indices &indices_in, float threshold); /** \brief Set the viewpoint. * \param[in] vpx the X coordinate of the viewpoint * \param[in] vpy the Y coordinate of the viewpoint * \param[in] vpz the Z coordinate of the viewpoint */ inline void setViewPoint (float vpx, float vpy, float vpz) { vpx_ = vpx; vpy_ = vpy; vpz_ = vpz; } /** \brief Set the radius used to compute normals * \param[in] radius_normals the radius */ inline void setRadiusNormals (float radius_normals) { radius_normals_ = radius_normals; } /** \brief Get the viewpoint. * \param[out] vpx the X coordinate of the viewpoint * \param[out] vpy the Y coordinate of the viewpoint * \param[out] vpz the Z coordinate of the viewpoint */ inline void getViewPoint (float &vpx, float &vpy, float &vpz) { vpx = vpx_; vpy = vpy_; vpz = vpz_; } /** \brief Get the centroids used to compute different CVFH descriptors * \param[out] centroids vector to hold the centroids */ inline void getCentroidClusters (std::vector > & centroids) { centroids.insert (centroids.cend (), centroids_dominant_orientations_.cbegin (), centroids_dominant_orientations_.cend ()); } /** \brief Get the normal centroids used to compute different CVFH descriptors * \param[out] centroids vector to hold the normal centroids */ inline void getCentroidNormalClusters (std::vector > & centroids) { for (const auto& normal: dominant_normals_) centroids.push_back (normal); } /** \brief Sets max. Euclidean distance between points to be added to the cluster * \param[in] d the maximum Euclidean distance */ inline void setClusterTolerance (float d) { cluster_tolerance_ = d; } /** \brief Sets max. deviation of the normals between two points so they can be clustered together * \param[in] d the maximum deviation */ inline void setEPSAngleThreshold (float d) { eps_angle_threshold_ = d; } /** \brief Sets curvature threshold for removing normals * \param[in] d the curvature threshold */ inline void setCurvatureThreshold (float d) { curv_threshold_ = d; } /** \brief Set minimum amount of points for a cluster to be considered * \param[in] min the minimum amount of points to be set */ inline void setMinPoints (std::size_t min) { min_points_ = min; } /** \brief Sets whether if the CVFH signatures should be normalized or not * \param[in] normalize true if normalization is required, false otherwise */ inline void setNormalizeBins (bool normalize) { normalize_bins_ = normalize; } /** \brief Overloaded computed method from pcl::Feature. * \param[out] output the resultant point cloud model dataset containing the estimated features */ void compute (PointCloudOut &output); private: /** \brief Values describing the viewpoint ("pinhole" camera model assumed). * By default, the viewpoint is set to 0,0,0. */ float vpx_, vpy_, vpz_; /** \brief Size of the voxels after voxel gridding. IMPORTANT: Must match the voxel * size of the training data or the normalize_bins_ flag must be set to true. */ float leaf_size_; /** \brief Whether to normalize the signatures or not. Default: false. */ bool normalize_bins_; /** \brief Curvature threshold for removing normals. */ float curv_threshold_; /** \brief allowed Euclidean distance between points to be added to the cluster. */ float cluster_tolerance_; /** \brief deviation of the normals between two points so they can be clustered together. */ float eps_angle_threshold_; /** \brief Minimum amount of points in a clustered region to be considered stable for CVFH * computation. */ std::size_t min_points_; /** \brief Radius for the normals computation. */ float radius_normals_; /** \brief Estimate the Clustered Viewpoint Feature Histograms (CVFH) descriptors at * a set of points given by using the surface in * setSearchSurface () * * \param[out] output the resultant point cloud model dataset that contains the CVFH * feature estimates */ void computeFeature (PointCloudOut &output) override; /** \brief Region growing method using Euclidean distances and neighbors normals to * add points to a region. * \param[in] cloud point cloud to split into regions * \param[in] normals are the normals of cloud * \param[in] tolerance is the allowed Euclidean distance between points to be added to * the cluster * \param[in] tree is the spatial search structure for nearest neighbour search * \param[out] clusters vector of indices representing the clustered regions * \param[in] eps_angle deviation of the normals between two points so they can be * clustered together * \param[in] min_pts_per_cluster minimum cluster size. (default: 1 point) * \param[in] max_pts_per_cluster maximum cluster size. (default: all the points) */ void extractEuclideanClustersSmooth (const pcl::PointCloud &cloud, const pcl::PointCloud &normals, float tolerance, const pcl::search::Search::Ptr &tree, std::vector &clusters, double eps_angle, unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits::max) ()); protected: /** \brief Centroids that were used to compute different CVFH descriptors */ std::vector > centroids_dominant_orientations_; /** \brief Normal centroids that were used to compute different CVFH descriptors */ std::vector > dominant_normals_; }; } #ifdef PCL_NO_PRECOMPILE #include #endif