507 lines
20 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/surface/reconstruction.h>
#include <boost/dynamic_bitset/dynamic_bitset.hpp> // for dynamic_bitset
#include <unordered_map>
namespace pcl
{
/** \brief The 12 edges of a cell. */
const int I_SHIFT_EP[12][2] = {
{0, 4}, {1, 5}, {2, 6}, {3, 7},
{0, 1}, {1, 2}, {2, 3}, {3, 0},
{4, 5}, {5, 6}, {6, 7}, {7, 4}
};
const int I_SHIFT_PT[4] = {
0, 4, 5, 7
};
const int I_SHIFT_EDGE[3][2] = {
{0,1}, {1,3}, {1,2}
};
/** \brief Grid projection surface reconstruction method.
* \author Rosie Li
*
* \note If you use this code in any academic work, please cite:
* - Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, Tao Ju.
* Polygonizing extremal surfaces with manifold guarantees.
* In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, 2010.
* \ingroup surface
*/
template <typename PointNT>
class GridProjection : public SurfaceReconstruction<PointNT>
{
public:
using Ptr = shared_ptr<GridProjection<PointNT> >;
using ConstPtr = shared_ptr<const GridProjection<PointNT> >;
using SurfaceReconstruction<PointNT>::input_;
using SurfaceReconstruction<PointNT>::tree_;
using PointCloudPtr = typename pcl::PointCloud<PointNT>::Ptr;
using KdTree = pcl::KdTree<PointNT>;
using KdTreePtr = typename KdTree::Ptr;
/** \brief Data leaf. */
struct Leaf
{
Leaf () {}
pcl::Indices data_indices;
Eigen::Vector4f pt_on_surface;
Eigen::Vector3f vect_at_grid_pt;
};
typedef std::unordered_map<int, Leaf, std::hash<int>, std::equal_to<>, Eigen::aligned_allocator<std::pair<const int, Leaf>>> HashMap;
/** \brief Constructor. */
GridProjection ();
/** \brief Constructor.
* \param in_resolution set the resolution of the grid
*/
GridProjection (double in_resolution);
/** \brief Destructor. */
~GridProjection ();
/** \brief Set the size of the grid cell
* \param resolution the size of the grid cell
*/
inline void
setResolution (double resolution)
{
leaf_size_ = resolution;
}
inline double
getResolution () const
{
return (leaf_size_);
}
/** \brief When averaging the vectors, we find the union of all the input data
* points within the padding area,and do a weighted average. Say if the padding
* size is 1, when we process cell (x,y,z), we will find union of input data points
* from (x-1) to (x+1), (y-1) to (y+1), (z-1) to (z+1)(in total, 27 cells). In this
* way, even the cells itself doesn't contain any data points, we will still process it
* because there are data points in the padding area. This can help us fix holes which
* is smaller than the padding size.
* \param padding_size The num of padding cells we want to create
*/
inline void
setPaddingSize (int padding_size)
{
padding_size_ = padding_size;
}
inline int
getPaddingSize () const
{
return (padding_size_);
}
/** \brief Set this only when using the k nearest neighbors search
* instead of finding the point union
* \param k The number of nearest neighbors we are looking for
*/
inline void
setNearestNeighborNum (int k)
{
k_ = k;
}
inline int
getNearestNeighborNum () const
{
return (k_);
}
/** \brief Binary search is used in projection. given a point x, we find another point
* which is 3*cell_size_ far away from x. Then we do a binary search between these
* two points to find where the projected point should be.
*/
inline void
setMaxBinarySearchLevel (int max_binary_search_level)
{
max_binary_search_level_ = max_binary_search_level;
}
inline int
getMaxBinarySearchLevel () const
{
return (max_binary_search_level_);
}
///////////////////////////////////////////////////////////
inline const HashMap&
getCellHashMap () const
{
return (cell_hash_map_);
}
inline const std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> >&
getVectorAtDataPoint () const
{
return (vector_at_data_point_);
}
inline const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> >&
getSurface () const
{
return (surface_);
}
protected:
/** \brief Get the bounding box for the input data points, also calculating the
* cell size, and the gaussian scale factor
*/
void
getBoundingBox ();
/** \brief The actual surface reconstruction method.
* \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
*/
bool
reconstructPolygons (std::vector<pcl::Vertices> &polygons);
/** \brief Create the surface.
*
* The 1st step is filling the padding, so that all the cells in the padding
* area are in the hash map. The 2nd step is store the vector, and projected
* point. The 3rd step is finding all the edges intersects the surface, and
* creating surface.
*
* \param[out] output the resultant polygonal mesh
*/
void
performReconstruction (pcl::PolygonMesh &output) override;
/** \brief Create the surface.
*
* The 1st step is filling the padding, so that all the cells in the padding
* area are in the hash map. The 2nd step is store the vector, and projected
* point. The 3rd step is finding all the edges intersects the surface, and
* creating surface.
*
* \param[out] points the resultant points lying on the surface
* \param[out] polygons the resultant polygons, as a set of vertices. The Vertices structure contains an array of point indices.
*/
void
performReconstruction (pcl::PointCloud<PointNT> &points,
std::vector<pcl::Vertices> &polygons) override;
/** \brief When the input data points don't fill into the 1*1*1 box,
* scale them so that they can be filled in the unit box. Otherwise,
* it will be some drawing problem when doing visulization
* \param scale_factor scale all the input data point by scale_factor
*/
void
scaleInputDataPoint (double scale_factor);
/** \brief Get the 3d index (x,y,z) of the cell based on the location of
* the cell
* \param p the coordinate of the input point
* \param index the output 3d index
*/
inline void
getCellIndex (const Eigen::Vector4f &p, Eigen::Vector3i& index) const
{
for (int i = 0; i < 3; ++i)
index[i] = static_cast<int> ((p[i] - min_p_(i)) / leaf_size_);
}
/** \brief Given the 3d index (x, y, z) of the cell, get the
* coordinates of the cell center
* \param index the output 3d index
* \param center the resultant cell center
*/
inline void
getCellCenterFromIndex (const Eigen::Vector3i &index, Eigen::Vector4f &center) const
{
for (int i = 0; i < 3; ++i)
center[i] =
min_p_[i] + static_cast<float> (index[i]) *
static_cast<float> (leaf_size_) +
static_cast<float> (leaf_size_) / 2.0f;
}
/** \brief Given cell center, caluate the coordinates of the eight vertices of the cell
* \param cell_center the coordinates of the cell center
* \param pts the coordinates of the 8 vertices
*/
void
getVertexFromCellCenter (const Eigen::Vector4f &cell_center,
std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > &pts) const;
/** \brief Given an index (x, y, z) in 3d, translate it into the index
* in 1d
* \param index the index of the cell in (x,y,z) 3d format
*/
inline int
getIndexIn1D (const Eigen::Vector3i &index) const
{
//assert(data_size_ > 0);
return (index[0] * data_size_ * data_size_ +
index[1] * data_size_ + index[2]);
}
/** \brief Given an index in 1d, translate it into the index (x, y, z)
* in 3d
* \param index_1d the input 1d index
* \param index_3d the output 3d index
*/
inline void
getIndexIn3D (int index_1d, Eigen::Vector3i& index_3d) const
{
//assert(data_size_ > 0);
index_3d[0] = index_1d / (data_size_ * data_size_);
index_1d -= index_3d[0] * data_size_ * data_size_;
index_3d[1] = index_1d / data_size_;
index_1d -= index_3d[1] * data_size_;
index_3d[2] = index_1d;
}
/** \brief For a given 3d index of a cell, test whether the cells within its
* padding area exist in the hash table, if no, create an entry for that cell.
* \param index the index of the cell in (x,y,z) format
*/
void
fillPad (const Eigen::Vector3i &index);
/** \brief Obtain the index of a cell and the pad size.
* \param index the input index
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
void
getDataPtsUnion (const Eigen::Vector3i &index, pcl::Indices &pt_union_indices);
/** \brief Given the index of a cell, exam it's up, left, front edges, and add
* the vectices to m_surface list.the up, left, front edges only share 4
* points, we first get the vectors at these 4 points and exam whether those
* three edges are intersected by the surface \param index the input index
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
void
createSurfaceForCell (const Eigen::Vector3i &index, pcl::Indices &pt_union_indices);
/** \brief Given the coordinates of one point, project it onto the surface,
* return the projected point. Do a binary search between p and p+projection_distance
* to find the projected point
* \param p the coordinates of the input point
* \param pt_union_indices the union of input data points within the cell and padding cells
* \param projection the resultant point projected
*/
void
getProjection (const Eigen::Vector4f &p, pcl::Indices &pt_union_indices, Eigen::Vector4f &projection);
/** \brief Given the coordinates of one point, project it onto the surface,
* return the projected point. Find the plane which fits all the points in
* pt_union_indices, projected p to the plane to get the projected point.
* \param p the coordinates of the input point
* \param pt_union_indices the union of input data points within the cell and padding cells
* \param projection the resultant point projected
*/
void
getProjectionWithPlaneFit (const Eigen::Vector4f &p,
pcl::Indices &pt_union_indices,
Eigen::Vector4f &projection);
/** \brief Given the location of a point, get it's vector
* \param p the coordinates of the input point
* \param pt_union_indices the union of input data points within the cell and padding cells
* \param vo the resultant vector
*/
void
getVectorAtPoint (const Eigen::Vector4f &p,
pcl::Indices &pt_union_indices, Eigen::Vector3f &vo);
/** \brief Given the location of a point, get it's vector
* \param p the coordinates of the input point
* \param k_indices the k nearest neighbors of the query point
* \param k_squared_distances the squared distances of the k nearest
* neighbors to the query point
* \param vo the resultant vector
*/
void
getVectorAtPointKNN (const Eigen::Vector4f &p,
pcl::Indices &k_indices,
std::vector<float> &k_squared_distances,
Eigen::Vector3f &vo);
/** \brief Get the magnitude of the vector by summing up the distance.
* \param p the coordinate of the input point
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
double
getMagAtPoint (const Eigen::Vector4f &p, const pcl::Indices &pt_union_indices);
/** \brief Get the 1st derivative
* \param p the coordinate of the input point
* \param vec the vector at point p
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
double
getD1AtPoint (const Eigen::Vector4f &p, const Eigen::Vector3f &vec,
const pcl::Indices &pt_union_indices);
/** \brief Get the 2nd derivative
* \param p the coordinate of the input point
* \param vec the vector at point p
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
double
getD2AtPoint (const Eigen::Vector4f &p, const Eigen::Vector3f &vec,
const pcl::Indices &pt_union_indices);
/** \brief Test whether the edge is intersected by the surface by
* doing the dot product of the vector at two end points. Also test
* whether the edge is intersected by the maximum surface by examing
* the 2nd derivative of the intersection point
* \param end_pts the two points of the edge
* \param vect_at_end_pts
* \param pt_union_indices the union of input data points within the cell and padding cells
*/
bool
isIntersected (const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > &end_pts,
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > &vect_at_end_pts,
pcl::Indices &pt_union_indices);
/** \brief Find point where the edge intersects the surface.
* \param level binary search level
* \param end_pts the two end points on the edge
* \param vect_at_end_pts the vectors at the two end points
* \param start_pt the starting point we use for binary search
* \param pt_union_indices the union of input data points within the cell and padding cells
* \param intersection the resultant intersection point
*/
void
findIntersection (int level,
const std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > &end_pts,
const std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > &vect_at_end_pts,
const Eigen::Vector4f &start_pt,
pcl::Indices &pt_union_indices,
Eigen::Vector4f &intersection);
/** \brief Go through all the entries in the hash table and update the
* cellData.
*
* When creating the hash table, the pt_on_surface field store the center
* point of the cell.After calling this function, the projection operator will
* project the center point onto the surface, and the pt_on_surface field will
* be updated using the projected point.Also the vect_at_grid_pt field will be
* updated using the vector at the upper left front vertex of the cell.
*
* \param index_1d the index of the cell after flatting it's 3d index into a 1d array
* \param index_3d the index of the cell in (x,y,z) 3d format
* \param pt_union_indices the union of input data points within the cell and pads
* \param cell_data information stored in the cell
*/
void
storeVectAndSurfacePoint (int index_1d, const Eigen::Vector3i &index_3d,
pcl::Indices &pt_union_indices, const Leaf &cell_data);
/** \brief Go through all the entries in the hash table and update the cellData.
* When creating the hash table, the pt_on_surface field store the center point
* of the cell.After calling this function, the projection operator will project the
* center point onto the surface, and the pt_on_surface field will be updated
* using the projected point.Also the vect_at_grid_pt field will be updated using
* the vector at the upper left front vertex of the cell. When projecting the point
* and calculating the vector, using K nearest neighbors instead of using the
* union of input data point within the cell and pads.
*
* \param index_1d the index of the cell after flatting it's 3d index into a 1d array
* \param index_3d the index of the cell in (x,y,z) 3d format
* \param cell_data information stored in the cell
*/
void
storeVectAndSurfacePointKNN (int index_1d, const Eigen::Vector3i &index_3d, const Leaf &cell_data);
private:
/** \brief Map containing the set of leaves. */
HashMap cell_hash_map_;
/** \brief Min and max data points. */
Eigen::Vector4f min_p_, max_p_;
/** \brief The size of a leaf. */
double leaf_size_;
/** \brief Gaussian scale. */
double gaussian_scale_;
/** \brief Data size. */
int data_size_;
/** \brief Max binary search level. */
int max_binary_search_level_;
/** \brief Number of neighbors (k) to use. */
int k_;
/** \brief Padding size. */
int padding_size_;
/** \brief The point cloud input (XYZ+Normals). */
PointCloudPtr data_;
/** \brief Store the surface normal(vector) at the each input data point. */
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > vector_at_data_point_;
/** \brief An array of points which lay on the output surface. */
std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > surface_;
/** \brief Bit map which tells if there is any input data point in the cell. */
boost::dynamic_bitset<> occupied_cell_list_;
/** \brief Class get name method. */
std::string getClassName () const override { return ("GridProjection"); }
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
}