174 lines
7.4 KiB
C
174 lines
7.4 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $id: $
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/pcl_base.h>
|
||
|
|
#include <pcl/point_types_conversion.h>
|
||
|
|
#include <pcl/search/search.h> // for Search
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
|
||
|
|
* \param[in] cloud the point cloud message
|
||
|
|
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
|
||
|
|
* \note the tree has to be created as a spatial locator on \a cloud
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
|
||
|
|
* \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
|
||
|
|
* \param[out] indices_out
|
||
|
|
* \param[in] delta_hue
|
||
|
|
* \todo look how to make this templated!
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
seededHueSegmentation (const PointCloud<PointXYZRGB> &cloud,
|
||
|
|
const search::Search<PointXYZRGB>::Ptr &tree,
|
||
|
|
float tolerance,
|
||
|
|
PointIndices &indices_in,
|
||
|
|
PointIndices &indices_out,
|
||
|
|
float delta_hue = 0.0);
|
||
|
|
|
||
|
|
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
|
||
|
|
* \param[in] cloud the point cloud message
|
||
|
|
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
|
||
|
|
* \note the tree has to be created as a spatial locator on \a cloud
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
|
||
|
|
* \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
|
||
|
|
* \param[out] indices_out
|
||
|
|
* \param[in] delta_hue
|
||
|
|
* \todo look how to make this templated!
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
seededHueSegmentation (const PointCloud<PointXYZRGB> &cloud,
|
||
|
|
const search::Search<PointXYZRGBL>::Ptr &tree,
|
||
|
|
float tolerance,
|
||
|
|
PointIndices &indices_in,
|
||
|
|
PointIndices &indices_out,
|
||
|
|
float delta_hue = 0.0);
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief SeededHueSegmentation
|
||
|
|
* \author Koen Buys
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
class SeededHueSegmentation: public PCLBase<PointXYZRGB>
|
||
|
|
{
|
||
|
|
using BasePCLBase = PCLBase<PointXYZRGB>;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using PointCloud = pcl::PointCloud<PointXYZRGB>;
|
||
|
|
using PointCloudPtr = PointCloud::Ptr;
|
||
|
|
using PointCloudConstPtr = PointCloud::ConstPtr;
|
||
|
|
|
||
|
|
using KdTree = pcl::search::Search<PointXYZRGB>;
|
||
|
|
using KdTreePtr = pcl::search::Search<PointXYZRGB>::Ptr;
|
||
|
|
|
||
|
|
using PointIndicesPtr = PointIndices::Ptr;
|
||
|
|
using PointIndicesConstPtr = PointIndices::ConstPtr;
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
SeededHueSegmentation () : cluster_tolerance_ (0), delta_hue_ (0.0)
|
||
|
|
{};
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the search object.
|
||
|
|
* \param[in] tree a pointer to the spatial search object.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the search method used. */
|
||
|
|
inline KdTreePtr
|
||
|
|
getSearchMethod () const { return (tree_); }
|
||
|
|
|
||
|
|
/** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; }
|
||
|
|
|
||
|
|
/** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
|
||
|
|
inline double
|
||
|
|
getClusterTolerance () const { return (cluster_tolerance_); }
|
||
|
|
|
||
|
|
/** \brief Set the tollerance on the hue
|
||
|
|
* \param[in] delta_hue the new delta hue
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setDeltaHue (float delta_hue) { delta_hue_ = delta_hue; }
|
||
|
|
|
||
|
|
/** \brief Get the tolerance on the hue */
|
||
|
|
inline float
|
||
|
|
getDeltaHue () const { return (delta_hue_); }
|
||
|
|
|
||
|
|
/** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
|
||
|
|
* \param[in] indices_in
|
||
|
|
* \param[out] indices_out
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
segment (PointIndices &indices_in, PointIndices &indices_out);
|
||
|
|
|
||
|
|
protected:
|
||
|
|
// Members derived from the base class
|
||
|
|
using BasePCLBase::input_;
|
||
|
|
using BasePCLBase::indices_;
|
||
|
|
using BasePCLBase::initCompute;
|
||
|
|
using BasePCLBase::deinitCompute;
|
||
|
|
|
||
|
|
/** \brief A pointer to the spatial search object. */
|
||
|
|
KdTreePtr tree_;
|
||
|
|
|
||
|
|
/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
|
||
|
|
double cluster_tolerance_;
|
||
|
|
|
||
|
|
/** \brief The allowed difference on the hue*/
|
||
|
|
float delta_hue_;
|
||
|
|
|
||
|
|
/** \brief Class getName method. */
|
||
|
|
virtual std::string getClassName () const { return ("seededHueSegmentation"); }
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/segmentation/impl/seeded_hue_segmentation.hpp>
|
||
|
|
#endif
|