202 lines
8.1 KiB
C++
202 lines
8.1 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Copyright (c) 2011, Willow Garage, Inc.
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $id $
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_
|
||
|
|
#define PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_
|
||
|
|
|
||
|
|
#include <pcl/segmentation/extract_labeled_clusters.h>
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointT>
|
||
|
|
void
|
||
|
|
pcl::extractLabeledEuclideanClusters(
|
||
|
|
const PointCloud<PointT>& cloud,
|
||
|
|
const typename search::Search<PointT>::Ptr& tree,
|
||
|
|
float tolerance,
|
||
|
|
std::vector<std::vector<PointIndices>>& labeled_clusters,
|
||
|
|
unsigned int min_pts_per_cluster,
|
||
|
|
unsigned int max_pts_per_cluster,
|
||
|
|
unsigned int)
|
||
|
|
{
|
||
|
|
pcl::extractLabeledEuclideanClusters<PointT>(cloud,
|
||
|
|
tree,
|
||
|
|
tolerance,
|
||
|
|
labeled_clusters,
|
||
|
|
min_pts_per_cluster,
|
||
|
|
max_pts_per_cluster);
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename PointT>
|
||
|
|
void
|
||
|
|
pcl::extractLabeledEuclideanClusters(
|
||
|
|
const PointCloud<PointT>& cloud,
|
||
|
|
const typename search::Search<PointT>::Ptr& tree,
|
||
|
|
float tolerance,
|
||
|
|
std::vector<std::vector<PointIndices>>& labeled_clusters,
|
||
|
|
unsigned int min_pts_per_cluster,
|
||
|
|
unsigned int max_pts_per_cluster)
|
||
|
|
{
|
||
|
|
if (tree->getInputCloud()->size() != cloud.size()) {
|
||
|
|
PCL_ERROR("[pcl::extractLabeledEuclideanClusters] Tree built for a different point "
|
||
|
|
"cloud dataset (%lu) than the input cloud (%lu)!\n",
|
||
|
|
tree->getInputCloud()->size(),
|
||
|
|
cloud.size());
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
// Create a bool vector of processed point indices, and initialize it to false
|
||
|
|
std::vector<bool> processed(cloud.size(), false);
|
||
|
|
|
||
|
|
Indices nn_indices;
|
||
|
|
std::vector<float> nn_distances;
|
||
|
|
|
||
|
|
// Process all points in the indices vector
|
||
|
|
for (index_t i = 0; i < static_cast<index_t>(cloud.size()); ++i) {
|
||
|
|
if (processed[i])
|
||
|
|
continue;
|
||
|
|
|
||
|
|
Indices seed_queue;
|
||
|
|
int sq_idx = 0;
|
||
|
|
seed_queue.push_back(i);
|
||
|
|
|
||
|
|
processed[i] = true;
|
||
|
|
|
||
|
|
while (sq_idx < static_cast<int>(seed_queue.size())) {
|
||
|
|
// Search for sq_idx
|
||
|
|
int ret = tree->radiusSearch(seed_queue[sq_idx],
|
||
|
|
tolerance,
|
||
|
|
nn_indices,
|
||
|
|
nn_distances,
|
||
|
|
std::numeric_limits<int>::max());
|
||
|
|
if (ret == -1)
|
||
|
|
PCL_ERROR("radiusSearch on tree came back with error -1");
|
||
|
|
if (!ret) {
|
||
|
|
sq_idx++;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
for (std::size_t j = 1; j < nn_indices.size();
|
||
|
|
++j) // nn_indices[0] should be sq_idx
|
||
|
|
{
|
||
|
|
if (processed[nn_indices[j]]) // Has this point been processed before ?
|
||
|
|
continue;
|
||
|
|
if (cloud[i].label == cloud[nn_indices[j]].label) {
|
||
|
|
// Perform a simple Euclidean clustering
|
||
|
|
seed_queue.push_back(nn_indices[j]);
|
||
|
|
processed[nn_indices[j]] = true;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
sq_idx++;
|
||
|
|
}
|
||
|
|
|
||
|
|
// If this queue is satisfactory, add to the clusters
|
||
|
|
if (seed_queue.size() >= min_pts_per_cluster &&
|
||
|
|
seed_queue.size() <= max_pts_per_cluster) {
|
||
|
|
pcl::PointIndices r;
|
||
|
|
r.indices.resize(seed_queue.size());
|
||
|
|
for (std::size_t j = 0; j < seed_queue.size(); ++j)
|
||
|
|
r.indices[j] = seed_queue[j];
|
||
|
|
|
||
|
|
std::sort(r.indices.begin(), r.indices.end());
|
||
|
|
r.indices.erase(std::unique(r.indices.begin(), r.indices.end()), r.indices.end());
|
||
|
|
|
||
|
|
r.header = cloud.header;
|
||
|
|
labeled_clusters[cloud[i].label].push_back(
|
||
|
|
r); // We could avoid a copy by working directly in the vector
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
|
||
|
|
template <typename PointT>
|
||
|
|
void
|
||
|
|
pcl::LabeledEuclideanClusterExtraction<PointT>::extract(
|
||
|
|
std::vector<std::vector<PointIndices>>& labeled_clusters)
|
||
|
|
{
|
||
|
|
if (!initCompute() || (input_ && input_->empty()) ||
|
||
|
|
(indices_ && indices_->empty())) {
|
||
|
|
labeled_clusters.clear();
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Initialize the spatial locator
|
||
|
|
if (!tree_) {
|
||
|
|
if (input_->isOrganized())
|
||
|
|
tree_.reset(new pcl::search::OrganizedNeighbor<PointT>());
|
||
|
|
else
|
||
|
|
tree_.reset(new pcl::search::KdTree<PointT>(false));
|
||
|
|
}
|
||
|
|
|
||
|
|
// Send the input dataset to the spatial locator
|
||
|
|
tree_->setInputCloud(input_);
|
||
|
|
extractLabeledEuclideanClusters(*input_,
|
||
|
|
tree_,
|
||
|
|
static_cast<float>(cluster_tolerance_),
|
||
|
|
labeled_clusters,
|
||
|
|
min_pts_per_cluster_,
|
||
|
|
max_pts_per_cluster_);
|
||
|
|
|
||
|
|
// Sort the clusters based on their size (largest one first)
|
||
|
|
for (auto& labeled_cluster : labeled_clusters)
|
||
|
|
std::sort(labeled_cluster.rbegin(), labeled_cluster.rend(), comparePointClusters);
|
||
|
|
|
||
|
|
deinitCompute();
|
||
|
|
}
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_LabeledEuclideanClusterExtraction(T) \
|
||
|
|
template class PCL_EXPORTS pcl::LabeledEuclideanClusterExtraction<T>;
|
||
|
|
#define PCL_INSTANTIATE_extractLabeledEuclideanClusters_deprecated(T) \
|
||
|
|
template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters<T>( \
|
||
|
|
const pcl::PointCloud<T>&, \
|
||
|
|
const typename pcl::search::Search<T>::Ptr&, \
|
||
|
|
float, \
|
||
|
|
std::vector<std::vector<pcl::PointIndices>>&, \
|
||
|
|
unsigned int, \
|
||
|
|
unsigned int, \
|
||
|
|
unsigned int);
|
||
|
|
#define PCL_INSTANTIATE_extractLabeledEuclideanClusters(T) \
|
||
|
|
template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters<T>( \
|
||
|
|
const pcl::PointCloud<T>&, \
|
||
|
|
const typename pcl::search::Search<T>::Ptr&, \
|
||
|
|
float, \
|
||
|
|
std::vector<std::vector<pcl::PointIndices>>&, \
|
||
|
|
unsigned int, \
|
||
|
|
unsigned int);
|
||
|
|
|
||
|
|
#endif // PCL_EXTRACT_CLUSTERS_IMPL_H_
|