265 lines
11 KiB
C++
265 lines
11 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Copyright (c) 2009, Willow Garage, Inc.
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_
|
||
|
|
#define PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_
|
||
|
|
|
||
|
|
#include <pcl/segmentation/extract_clusters.h>
|
||
|
|
#include <pcl/search/organized.h> // for OrganizedNeighbor
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointT> void
|
||
|
|
pcl::extractEuclideanClusters (const PointCloud<PointT> &cloud,
|
||
|
|
const typename search::Search<PointT>::Ptr &tree,
|
||
|
|
float tolerance, std::vector<PointIndices> &clusters,
|
||
|
|
unsigned int min_pts_per_cluster,
|
||
|
|
unsigned int max_pts_per_cluster)
|
||
|
|
{
|
||
|
|
if (tree->getInputCloud ()->size () != cloud.size ())
|
||
|
|
{
|
||
|
|
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point cloud "
|
||
|
|
"dataset (%zu) than the input cloud (%zu)!\n",
|
||
|
|
static_cast<std::size_t>(tree->getInputCloud()->size()),
|
||
|
|
static_cast<std::size_t>(cloud.size()));
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
// Check if the tree is sorted -- if it is we don't need to check the first element
|
||
|
|
int nn_start_idx = tree->getSortedResults () ? 1 : 0;
|
||
|
|
// Create a bool vector of processed point indices, and initialize it to false
|
||
|
|
std::vector<bool> processed (cloud.size (), false);
|
||
|
|
|
||
|
|
Indices nn_indices;
|
||
|
|
std::vector<float> nn_distances;
|
||
|
|
// Process all points in the indices vector
|
||
|
|
for (int i = 0; i < static_cast<int> (cloud.size ()); ++i)
|
||
|
|
{
|
||
|
|
if (processed[i])
|
||
|
|
continue;
|
||
|
|
|
||
|
|
Indices seed_queue;
|
||
|
|
int sq_idx = 0;
|
||
|
|
seed_queue.push_back (i);
|
||
|
|
|
||
|
|
processed[i] = true;
|
||
|
|
|
||
|
|
while (sq_idx < static_cast<int> (seed_queue.size ()))
|
||
|
|
{
|
||
|
|
// Search for sq_idx
|
||
|
|
if (!tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances))
|
||
|
|
{
|
||
|
|
sq_idx++;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j) // can't assume sorted (default isn't!)
|
||
|
|
{
|
||
|
|
if (nn_indices[j] == UNAVAILABLE || processed[nn_indices[j]]) // Has this point been processed before ?
|
||
|
|
continue;
|
||
|
|
|
||
|
|
// Perform a simple Euclidean clustering
|
||
|
|
seed_queue.push_back (nn_indices[j]);
|
||
|
|
processed[nn_indices[j]] = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
sq_idx++;
|
||
|
|
}
|
||
|
|
|
||
|
|
// If this queue is satisfactory, add to the clusters
|
||
|
|
if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
|
||
|
|
{
|
||
|
|
pcl::PointIndices r;
|
||
|
|
r.indices.resize (seed_queue.size ());
|
||
|
|
for (std::size_t j = 0; j < seed_queue.size (); ++j)
|
||
|
|
r.indices[j] = seed_queue[j];
|
||
|
|
|
||
|
|
// These two lines should not be needed: (can anyone confirm?) -FF
|
||
|
|
std::sort (r.indices.begin (), r.indices.end ());
|
||
|
|
r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
|
||
|
|
|
||
|
|
r.header = cloud.header;
|
||
|
|
clusters.push_back (r); // We could avoid a copy by working directly in the vector
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n",
|
||
|
|
seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** @todo: fix the return value, make sure the exit is not needed anymore*/
|
||
|
|
template <typename PointT> void
|
||
|
|
pcl::extractEuclideanClusters (const PointCloud<PointT> &cloud,
|
||
|
|
const Indices &indices,
|
||
|
|
const typename search::Search<PointT>::Ptr &tree,
|
||
|
|
float tolerance, std::vector<PointIndices> &clusters,
|
||
|
|
unsigned int min_pts_per_cluster,
|
||
|
|
unsigned int max_pts_per_cluster)
|
||
|
|
{
|
||
|
|
// \note If the tree was created over <cloud, indices>, we guarantee a 1-1 mapping between what the tree returns
|
||
|
|
//and indices[i]
|
||
|
|
if (tree->getInputCloud()->size() != cloud.size()) {
|
||
|
|
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point cloud "
|
||
|
|
"dataset (%zu) than the input cloud (%zu)!\n",
|
||
|
|
static_cast<std::size_t>(tree->getInputCloud()->size()),
|
||
|
|
static_cast<std::size_t>(cloud.size()));
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (tree->getIndices()->size() != indices.size()) {
|
||
|
|
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different set of "
|
||
|
|
"indices (%zu) than the input set (%zu)!\n",
|
||
|
|
static_cast<std::size_t>(tree->getIndices()->size()),
|
||
|
|
indices.size());
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
// Check if the tree is sorted -- if it is we don't need to check the first element
|
||
|
|
int nn_start_idx = tree->getSortedResults () ? 1 : 0;
|
||
|
|
|
||
|
|
// Create a bool vector of processed point indices, and initialize it to false
|
||
|
|
std::vector<bool> processed (cloud.size (), false);
|
||
|
|
|
||
|
|
Indices nn_indices;
|
||
|
|
std::vector<float> nn_distances;
|
||
|
|
// Process all points in the indices vector
|
||
|
|
for (const auto &index : indices)
|
||
|
|
{
|
||
|
|
if (processed[index])
|
||
|
|
continue;
|
||
|
|
|
||
|
|
Indices seed_queue;
|
||
|
|
int sq_idx = 0;
|
||
|
|
seed_queue.push_back (index);
|
||
|
|
|
||
|
|
processed[index] = true;
|
||
|
|
|
||
|
|
while (sq_idx < static_cast<int> (seed_queue.size ()))
|
||
|
|
{
|
||
|
|
// Search for sq_idx
|
||
|
|
int ret = tree->radiusSearch (cloud[seed_queue[sq_idx]], tolerance, nn_indices, nn_distances);
|
||
|
|
if( ret == -1)
|
||
|
|
{
|
||
|
|
PCL_ERROR("[pcl::extractEuclideanClusters] Received error code -1 from radiusSearch\n");
|
||
|
|
exit(0);
|
||
|
|
}
|
||
|
|
if (!ret)
|
||
|
|
{
|
||
|
|
sq_idx++;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j) // can't assume sorted (default isn't!)
|
||
|
|
{
|
||
|
|
if (nn_indices[j] == UNAVAILABLE || processed[nn_indices[j]]) // Has this point been processed before ?
|
||
|
|
continue;
|
||
|
|
|
||
|
|
// Perform a simple Euclidean clustering
|
||
|
|
seed_queue.push_back (nn_indices[j]);
|
||
|
|
processed[nn_indices[j]] = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
sq_idx++;
|
||
|
|
}
|
||
|
|
|
||
|
|
// If this queue is satisfactory, add to the clusters
|
||
|
|
if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
|
||
|
|
{
|
||
|
|
pcl::PointIndices r;
|
||
|
|
r.indices.resize (seed_queue.size ());
|
||
|
|
for (std::size_t j = 0; j < seed_queue.size (); ++j)
|
||
|
|
// This is the only place where indices come into play
|
||
|
|
r.indices[j] = seed_queue[j];
|
||
|
|
|
||
|
|
// These two lines should not be needed: (can anyone confirm?) -FF
|
||
|
|
//r.indices.assign(seed_queue.begin(), seed_queue.end());
|
||
|
|
std::sort (r.indices.begin (), r.indices.end ());
|
||
|
|
r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
|
||
|
|
|
||
|
|
r.header = cloud.header;
|
||
|
|
clusters.push_back (r); // We could avoid a copy by working directly in the vector
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n",
|
||
|
|
seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
|
||
|
|
template <typename PointT> void
|
||
|
|
pcl::EuclideanClusterExtraction<PointT>::extract (std::vector<PointIndices> &clusters)
|
||
|
|
{
|
||
|
|
if (!initCompute () ||
|
||
|
|
(input_ && input_->points.empty ()) ||
|
||
|
|
(indices_ && indices_->empty ()))
|
||
|
|
{
|
||
|
|
clusters.clear ();
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Initialize the spatial locator
|
||
|
|
if (!tree_)
|
||
|
|
{
|
||
|
|
if (input_->isOrganized ())
|
||
|
|
tree_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
|
||
|
|
else
|
||
|
|
tree_.reset (new pcl::search::KdTree<PointT> (false));
|
||
|
|
}
|
||
|
|
|
||
|
|
// Send the input dataset to the spatial locator
|
||
|
|
tree_->setInputCloud (input_, indices_);
|
||
|
|
extractEuclideanClusters (*input_, *indices_, tree_, static_cast<float> (cluster_tolerance_), clusters, min_pts_per_cluster_, max_pts_per_cluster_);
|
||
|
|
|
||
|
|
//tree_->setInputCloud (input_);
|
||
|
|
//extractEuclideanClusters (*input_, tree_, cluster_tolerance_, clusters, min_pts_per_cluster_, max_pts_per_cluster_);
|
||
|
|
|
||
|
|
// Sort the clusters based on their size (largest one first)
|
||
|
|
std::sort (clusters.rbegin (), clusters.rend (), comparePointClusters);
|
||
|
|
|
||
|
|
deinitCompute ();
|
||
|
|
}
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_EuclideanClusterExtraction(T) template class PCL_EXPORTS pcl::EuclideanClusterExtraction<T>;
|
||
|
|
#define PCL_INSTANTIATE_extractEuclideanClusters(T) template void PCL_EXPORTS pcl::extractEuclideanClusters<T>(const pcl::PointCloud<T> &, const typename pcl::search::Search<T>::Ptr &, float , std::vector<pcl::PointIndices> &, unsigned int, unsigned int);
|
||
|
|
#define PCL_INSTANTIATE_extractEuclideanClusters_indices(T) template void PCL_EXPORTS pcl::extractEuclideanClusters<T>(const pcl::PointCloud<T> &, const pcl::Indices &, const typename pcl::search::Search<T>::Ptr &, float , std::vector<pcl::PointIndices> &, unsigned int, unsigned int);
|
||
|
|
|
||
|
|
#endif // PCL_EXTRACT_CLUSTERS_IMPL_H_
|