376 lines
16 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2014-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_SEGMENTATION_IMPL_CPC_SEGMENTATION_HPP_
#define PCL_SEGMENTATION_IMPL_CPC_SEGMENTATION_HPP_
#include <pcl/sample_consensus/sac_model_plane.h> // for SampleConsensusModelPlane
#include <pcl/segmentation/cpc_segmentation.h>
template <typename PointT>
pcl::CPCSegmentation<PointT>::CPCSegmentation () :
max_cuts_ (20),
min_segment_size_for_cutting_ (400),
min_cut_score_ (0.16),
use_local_constrains_ (true),
use_directed_weights_ (true),
ransac_itrs_ (10000)
{
}
template <typename PointT>
pcl::CPCSegmentation<PointT>::~CPCSegmentation ()
{
}
template <typename PointT> void
pcl::CPCSegmentation<PointT>::segment ()
{
if (supervoxels_set_)
{
// Calculate for every Edge if the connection is convex or invalid
// This effectively performs the segmentation.
calculateConvexConnections (sv_adjacency_list_);
// Correct edge relations using extended convexity definition if k>0
applyKconvexity (k_factor_);
// Determine whether to use cutting planes
doGrouping ();
grouping_data_valid_ = true;
applyCuttingPlane (max_cuts_);
// merge small segments
mergeSmallSegments ();
}
else
PCL_WARN ("[pcl::CPCSegmentation::segment] WARNING: Call function setInputSupervoxels first. Nothing has been done. \n");
}
template <typename PointT> void
pcl::CPCSegmentation<PointT>::applyCuttingPlane (std::uint32_t depth_levels_left)
{
using SegLabel2ClusterMap = std::map<std::uint32_t, pcl::PointCloud<WeightSACPointType>::Ptr>;
pcl::console::print_info ("Cutting at level %d (maximum %d)\n", max_cuts_ - depth_levels_left + 1, max_cuts_);
// stop if we reached the 0 level
if (depth_levels_left <= 0)
return;
pcl::IndicesPtr support_indices (new pcl::Indices);
SegLabel2ClusterMap seg_to_edge_points_map;
std::map<std::uint32_t, std::vector<EdgeID> > seg_to_edgeIDs_map;
EdgeIterator edge_itr, edge_itr_end, next_edge;
boost::tie (edge_itr, edge_itr_end) = boost::edges (sv_adjacency_list_);
for (next_edge = edge_itr; edge_itr != edge_itr_end; edge_itr = next_edge)
{
next_edge++; // next_edge iterator is necessary, because removing an edge invalidates the iterator to the current edge
std::uint32_t source_sv_label = sv_adjacency_list_[boost::source (*edge_itr, sv_adjacency_list_)];
std::uint32_t target_sv_label = sv_adjacency_list_[boost::target (*edge_itr, sv_adjacency_list_)];
std::uint32_t source_segment_label = sv_label_to_seg_label_map_[source_sv_label];
std::uint32_t target_segment_label = sv_label_to_seg_label_map_[target_sv_label];
// do not process edges which already split two segments
if (source_segment_label != target_segment_label)
continue;
// if edge has been used for cutting already do not use it again
if (sv_adjacency_list_[*edge_itr].used_for_cutting)
continue;
// get centroids of vertices
const pcl::PointXYZRGBA source_centroid = sv_label_to_supervoxel_map_[source_sv_label]->centroid_;
const pcl::PointXYZRGBA target_centroid = sv_label_to_supervoxel_map_[target_sv_label]->centroid_;
// stores the information about the edge cloud (used for the weighted ransac)
// we use the normal to express the direction of the connection
// we use the intensity to express the normal differences between supervoxel patches. <=0: Convex, >0: Concave
WeightSACPointType edge_centroid;
edge_centroid.getVector3fMap () = (source_centroid.getVector3fMap () + target_centroid.getVector3fMap ()) / 2;
// we use the normal to express the direction of the connection!
edge_centroid.getNormalVector3fMap () = (target_centroid.getVector3fMap () - source_centroid.getVector3fMap ()).normalized ();
// we use the intensity to express the normal differences between supervoxel patches. <=0: Convex, >0: Concave
edge_centroid.intensity = sv_adjacency_list_[*edge_itr].is_convex ? -sv_adjacency_list_[*edge_itr].normal_difference : sv_adjacency_list_[*edge_itr].normal_difference;
if (seg_to_edge_points_map.find (source_segment_label) == seg_to_edge_points_map.end ())
{
seg_to_edge_points_map[source_segment_label] = pcl::PointCloud<WeightSACPointType>::Ptr (new pcl::PointCloud<WeightSACPointType> ());
}
seg_to_edge_points_map[source_segment_label]->push_back (edge_centroid);
seg_to_edgeIDs_map[source_segment_label].push_back (*edge_itr);
}
bool cut_found = false;
// do the following processing for each segment separately
for (const auto &seg_to_edge_points : seg_to_edge_points_map)
{
// if too small do not process
if (seg_to_edge_points.second->size () < min_segment_size_for_cutting_)
{
continue;
}
std::vector<double> weights;
weights.resize (seg_to_edge_points.second->size ());
for (std::size_t cp = 0; cp < seg_to_edge_points.second->size (); ++cp)
{
float& cur_weight = (*seg_to_edge_points.second)[cp].intensity;
cur_weight = cur_weight < concavity_tolerance_threshold_ ? 0 : 1;
weights[cp] = cur_weight;
}
pcl::PointCloud<WeightSACPointType>::Ptr edge_cloud_cluster = seg_to_edge_points.second;
pcl::SampleConsensusModelPlane<WeightSACPointType>::Ptr model_p (new pcl::SampleConsensusModelPlane<WeightSACPointType> (edge_cloud_cluster));
WeightedRandomSampleConsensus weight_sac (model_p, seed_resolution_, true);
weight_sac.setWeights (weights, use_directed_weights_);
weight_sac.setMaxIterations (ransac_itrs_);
// if not enough inliers are found
if (!weight_sac.computeModel ())
{
continue;
}
Eigen::VectorXf model_coefficients;
weight_sac.getModelCoefficients (model_coefficients);
model_coefficients[3] += std::numeric_limits<float>::epsilon ();
weight_sac.getInliers (*support_indices);
// the support_indices which are actually cut (if not locally constrain: cut_support_indices = support_indices
pcl::Indices cut_support_indices;
if (use_local_constrains_)
{
Eigen::Vector3f plane_normal (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
// Cut the connections.
// We only iterate through the points which are within the support (when we are local, otherwise all points in the segment).
// We also just actually cut when the edge goes through the plane. This is why we check the planedistance
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<WeightSACPointType> euclidean_clusterer;
pcl::search::KdTree<WeightSACPointType>::Ptr tree (new pcl::search::KdTree<WeightSACPointType>);
tree->setInputCloud (edge_cloud_cluster);
euclidean_clusterer.setClusterTolerance (seed_resolution_);
euclidean_clusterer.setMinClusterSize (1);
euclidean_clusterer.setMaxClusterSize (25000);
euclidean_clusterer.setSearchMethod (tree);
euclidean_clusterer.setInputCloud (edge_cloud_cluster);
euclidean_clusterer.setIndices (support_indices);
euclidean_clusterer.extract (cluster_indices);
// sv_adjacency_list_[seg_to_edgeID_map[seg_to_edge_points.first][point_index]].used_for_cutting = true;
for (const auto &cluster_index : cluster_indices)
{
// get centroids of vertices
int cluster_concave_pts = 0;
float cluster_score = 0;
// std::cout << "Cluster has " << cluster_indices[cc].indices.size () << " points" << std::endl;
for (const auto &current_index : cluster_index.indices)
{
double index_score = weights[current_index];
if (use_directed_weights_)
index_score *= 1.414 * (std::abs (plane_normal.dot (edge_cloud_cluster->at (current_index).getNormalVector3fMap ())));
cluster_score += index_score;
if (weights[current_index] > 0)
++cluster_concave_pts;
}
// check if the score is below the threshold. If that is the case this segment should not be split
cluster_score /= cluster_index.indices.size ();
// std::cout << "Cluster score: " << cluster_score << std::endl;
if (cluster_score >= min_cut_score_)
{
cut_support_indices.insert (cut_support_indices.end (), cluster_index.indices.begin (), cluster_index.indices.end ());
}
}
if (cut_support_indices.empty ())
{
// std::cout << "Could not find planes which exceed required minimum score (threshold " << min_cut_score_ << "), not cutting" << std::endl;
continue;
}
}
else
{
double current_score = weight_sac.getBestScore ();
cut_support_indices = *support_indices;
// check if the score is below the threshold. If that is the case this segment should not be split
if (current_score < min_cut_score_)
{
// std::cout << "Score too low, no cutting" << std::endl;
continue;
}
}
int number_connections_cut = 0;
for (const auto &point_index : cut_support_indices)
{
if (use_clean_cutting_)
{
// skip edges where both centroids are on one side of the cutting plane
std::uint32_t source_sv_label = sv_adjacency_list_[boost::source (seg_to_edgeIDs_map[seg_to_edge_points.first][point_index], sv_adjacency_list_)];
std::uint32_t target_sv_label = sv_adjacency_list_[boost::target (seg_to_edgeIDs_map[seg_to_edge_points.first][point_index], sv_adjacency_list_)];
// get centroids of vertices
const pcl::PointXYZRGBA source_centroid = sv_label_to_supervoxel_map_[source_sv_label]->centroid_;
const pcl::PointXYZRGBA target_centroid = sv_label_to_supervoxel_map_[target_sv_label]->centroid_;
// this makes a clean cut
if (pcl::pointToPlaneDistanceSigned (source_centroid, model_coefficients) * pcl::pointToPlaneDistanceSigned (target_centroid, model_coefficients) > 0)
{
continue;
}
}
sv_adjacency_list_[seg_to_edgeIDs_map[seg_to_edge_points.first][point_index]].used_for_cutting = true;
if (sv_adjacency_list_[seg_to_edgeIDs_map[seg_to_edge_points.first][point_index]].is_valid)
{
++number_connections_cut;
sv_adjacency_list_[seg_to_edgeIDs_map[seg_to_edge_points.first][point_index]].is_valid = false;
}
}
// std::cout << "We cut " << number_connections_cut << " connections" << std::endl;
if (number_connections_cut > 0)
cut_found = true;
}
// if not cut has been performed we can stop the recursion
if (cut_found)
{
doGrouping ();
--depth_levels_left;
applyCuttingPlane (depth_levels_left);
}
else
pcl::console::print_info ("Could not find any more cuts, stopping recursion\n");
}
/******************************************* Directional weighted RANSAC definitions ******************************************************************/
template <typename PointT> bool
pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel (int)
{
// Warn and exit if no threshold was set
if (threshold_ == std::numeric_limits<double>::max ())
{
PCL_ERROR ("[pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel] No threshold set!\n");
return (false);
}
iterations_ = 0;
best_score_ = -std::numeric_limits<double>::max ();
pcl::Indices selection;
Eigen::VectorXf model_coefficients;
unsigned skipped_count = 0;
// suppress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters!
const unsigned max_skip = max_iterations_ * 10;
// Iterate
while (iterations_ < max_iterations_ && skipped_count < max_skip)
{
// Get X samples which satisfy the model criteria and which have a weight > 0
sac_model_->setIndices (model_pt_indices_);
sac_model_->getSamples (iterations_, selection);
if (selection.empty ())
{
PCL_ERROR ("[pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel] No samples could be selected!\n");
break;
}
// Search for inliers in the point cloud for the current plane model M
if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
{
//++iterations_;
++skipped_count;
continue;
}
// weight distances to get the score (only using connected inliers)
sac_model_->setIndices (full_cloud_pt_indices_);
pcl::IndicesPtr current_inliers (new pcl::Indices);
sac_model_->selectWithinDistance (model_coefficients, threshold_, *current_inliers);
double current_score = 0;
Eigen::Vector3f plane_normal (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
for (const auto &current_index : *current_inliers)
{
double index_score = weights_[current_index];
if (use_directed_weights_)
// the sqrt(2) factor was used in the paper and was meant for making the scores better comparable between directed and undirected weights
index_score *= 1.414 * (std::abs (plane_normal.dot (point_cloud_ptr_->at (current_index).getNormalVector3fMap ())));
current_score += index_score;
}
// normalize by the total number of inliers
current_score /= current_inliers->size ();
// Better match ?
if (current_score > best_score_)
{
best_score_ = current_score;
// Save the current model/inlier/coefficients selection as being the best so far
model_ = selection;
model_coefficients_ = model_coefficients;
}
++iterations_;
PCL_DEBUG ("[pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel] Trial %d (max %d): score is %f (best is: %f so far).\n", iterations_, max_iterations_, current_score, best_score_);
if (iterations_ > max_iterations_)
{
PCL_DEBUG ("[pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel] RANSAC reached the maximum number of trials.\n");
break;
}
}
// std::cout << "Took us " << iterations_ - 1 << " iterations" << std::endl;
PCL_DEBUG ("[pcl::CPCSegmentation<PointT>::WeightedRandomSampleConsensus::computeModel] Model: %lu size, %f score.\n", model_.size (), best_score_);
if (model_.empty ())
{
inliers_.clear ();
return (false);
}
// Get the set of inliers that correspond to the best model found so far
sac_model_->selectWithinDistance (model_coefficients_, threshold_, inliers_);
return (true);
}
#endif // PCL_SEGMENTATION_IMPL_CPC_SEGMENTATION_HPP_