288 lines
13 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_cloud.h>
#include <pcl/search/search.h>
#include <pcl/common/eigen.h>
#include <algorithm>
#include <vector>
namespace pcl
{
namespace search
{
/** \brief OrganizedNeighbor is a class for optimized nearest neigbhor search in organized point clouds.
* \author Radu B. Rusu, Julius Kammerl, Suat Gedikli, Koen Buys
* \ingroup search
*/
template<typename PointT>
class OrganizedNeighbor : public pcl::search::Search<PointT>
{
public:
// public typedefs
using PointCloud = pcl::PointCloud<PointT>;
using PointCloudPtr = typename PointCloud::Ptr;
using PointCloudConstPtr = typename PointCloud::ConstPtr;
using Ptr = shared_ptr<pcl::search::OrganizedNeighbor<PointT> >;
using ConstPtr = shared_ptr<const pcl::search::OrganizedNeighbor<PointT> >;
using pcl::search::Search<PointT>::indices_;
using pcl::search::Search<PointT>::sorted_results_;
using pcl::search::Search<PointT>::input_;
/** \brief Constructor
* \param[in] sorted_results whether the results should be return sorted in ascending order on the distances or not.
* This applies only for radius search, since knn always returns sorted resutls
* \param[in] eps the threshold for the mean-squared-error of the estimation of the projection matrix.
* if the MSE is above this value, the point cloud is considered as not from a projective device,
* thus organized neighbor search can not be applied on that cloud.
* \param[in] pyramid_level the level of the down sampled point cloud to be used for projection matrix estimation
*/
OrganizedNeighbor (bool sorted_results = false, float eps = 1e-4f, unsigned pyramid_level = 5)
: Search<PointT> ("OrganizedNeighbor", sorted_results)
, projection_matrix_ (Eigen::Matrix<float, 3, 4, Eigen::RowMajor>::Zero ())
, KR_ (Eigen::Matrix<float, 3, 3, Eigen::RowMajor>::Zero ())
, KR_KRT_ (Eigen::Matrix<float, 3, 3, Eigen::RowMajor>::Zero ())
, eps_ (eps)
, pyramid_level_ (pyramid_level)
{
}
/** \brief Empty deconstructor. */
~OrganizedNeighbor () {}
/** \brief Test whether this search-object is valid (input is organized AND from projective device)
* User should use this method after setting the input cloud, since setInput just prints an error
* if input is not organized or a projection matrix could not be determined.
* \return true if the input data is organized and from a projective device, false otherwise
*/
bool
isValid () const
{
// determinant (KR) = determinant (K) * determinant (R) = determinant (K) = f_x * f_y.
// If we expect at max an opening angle of 170degree in x-direction -> f_x = 2.0 * width / tan (85 degree);
// 2 * tan (85 degree) ~ 22.86
float min_f = 0.043744332f * static_cast<float>(input_->width);
//std::cout << "isValid: " << determinant3x3Matrix<Eigen::Matrix3f> (KR_ / sqrt (KR_KRT_.coeff (8))) << " >= " << (min_f * min_f) << std::endl;
return (determinant3x3Matrix<Eigen::Matrix3f> (KR_ / std::sqrt (KR_KRT_.coeff (8))) >= (min_f * min_f));
}
/** \brief Compute the camera matrix
* \param[out] camera_matrix the resultant computed camera matrix
*/
void
computeCameraMatrix (Eigen::Matrix3f& camera_matrix) const;
/** \brief Provide a pointer to the input data set, if user has focal length he must set it before calling this
* \param[in] cloud the const boost shared pointer to a PointCloud message
* \param[in] indices the const boost shared pointer to PointIndices
*/
void
setInputCloud (const PointCloudConstPtr& cloud, const IndicesConstPtr &indices = IndicesConstPtr ()) override
{
input_ = cloud;
mask_.resize (input_->size ());
input_ = cloud;
indices_ = indices;
if (indices_ && !indices_->empty())
{
mask_.assign (input_->size (), 0);
for (const auto& idx : *indices_)
mask_[idx] = 1;
}
else
mask_.assign (input_->size (), 1);
estimateProjectionMatrix ();
}
/** \brief Search for all neighbors of query point that are within a given radius.
* \param[in] p_q the given query point
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
* \param[out] k_indices the resultant indices of the neighboring points
* \param[out] k_sqr_distances the resultant squared distances to the neighboring points
* \param[in] max_nn if given, bounds the maximum returned neighbors to this value. If \a max_nn is set to
* 0 or to a number higher than the number of points in the input cloud, all neighbors in \a radius will be
* returned.
* \return number of neighbors found in radius
*/
int
radiusSearch (const PointT &p_q,
double radius,
Indices &k_indices,
std::vector<float> &k_sqr_distances,
unsigned int max_nn = 0) const override;
/** \brief estimated the projection matrix from the input cloud. */
void
estimateProjectionMatrix ();
/** \brief Search for the k-nearest neighbors for a given query point.
* \note limiting the maximum search radius (with setMaxDistance) can lead to a significant improvement in search speed
* \param[in] p_q the given query point (\ref setInputCloud must be given a-priori!)
* \param[in] k the number of neighbors to search for (used only if horizontal and vertical window not given already!)
* \param[out] k_indices the resultant point indices (must be resized to \a k beforehand!)
* \param[out] k_sqr_distances \note this function does not return distances
* \return number of neighbors found
* @todo still need to implements this functionality
*/
int
nearestKSearch (const PointT &p_q,
int k,
Indices &k_indices,
std::vector<float> &k_sqr_distances) const override;
/** \brief projects a point into the image
* \param[in] p point in 3D World Coordinate Frame to be projected onto the image plane
* \param[out] q the 2D projected point in pixel coordinates (u,v)
* @return true if projection is valid, false otherwise
*/
bool projectPoint (const PointT& p, pcl::PointXY& q) const;
protected:
struct Entry
{
Entry (index_t idx, float dist) : index (idx), distance (dist) {}
Entry () : index (0), distance (0) {}
index_t index;
float distance;
inline bool
operator < (const Entry& other) const
{
return (distance < other.distance);
}
};
/** \brief test if point given by index is among the k NN in results to the query point.
* \param[in] query query point
* \param[in] k number of maximum nn interested in
* \param[in,out] queue priority queue with k NN
* \param[in] index index on point to be tested
* \return whether the top element changed or not.
*/
inline bool
testPoint (const PointT& query, unsigned k, std::vector<Entry>& queue, index_t index) const
{
const PointT& point = input_->points [index];
if (mask_ [index] && std::isfinite (point.x))
{
//float squared_distance = (point.getVector3fMap () - query.getVector3fMap ()).squaredNorm ();
float dist_x = point.x - query.x;
float dist_y = point.y - query.y;
float dist_z = point.z - query.z;
float squared_distance = dist_x * dist_x + dist_y * dist_y + dist_z * dist_z;
const auto queue_size = queue.size ();
const auto insert_into_queue = [&]{ queue.emplace (
std::upper_bound (queue.begin(), queue.end(), squared_distance,
[](float dist, const Entry& ent){ return dist<ent.distance; }),
index, squared_distance); };
if (queue_size < k)
{
insert_into_queue ();
return (queue_size + 1) == k;
}
if (queue.back ().distance > squared_distance)
{
queue.pop_back ();
insert_into_queue ();
return true; // top element has changed!
}
}
return false;
}
inline void
clipRange (int& begin, int &end, int min, int max) const
{
begin = std::max (std::min (begin, max), min);
end = std::min (std::max (end, min), max);
}
/** \brief Obtain a search box in 2D from a sphere with a radius in 3D
* \param[in] point the query point (sphere center)
* \param[in] squared_radius the squared sphere radius
* \param[out] minX the min X box coordinate
* \param[out] minY the min Y box coordinate
* \param[out] maxX the max X box coordinate
* \param[out] maxY the max Y box coordinate
*/
void
getProjectedRadiusSearchBox (const PointT& point, float squared_radius, unsigned& minX, unsigned& minY,
unsigned& maxX, unsigned& maxY) const;
/** \brief the projection matrix. Either set by user or calculated by the first / each input cloud */
Eigen::Matrix<float, 3, 4, Eigen::RowMajor> projection_matrix_;
/** \brief inveser of the left 3x3 projection matrix which is K * R (with K being the camera matrix and R the rotation matrix)*/
Eigen::Matrix<float, 3, 3, Eigen::RowMajor> KR_;
/** \brief inveser of the left 3x3 projection matrix which is K * R (with K being the camera matrix and R the rotation matrix)*/
Eigen::Matrix<float, 3, 3, Eigen::RowMajor> KR_KRT_;
/** \brief epsilon value for the MSE of the projection matrix estimation*/
const float eps_;
/** \brief using only a subsample of points to calculate the projection matrix. pyramid_level_ = use down sampled cloud given by pyramid_level_*/
const unsigned pyramid_level_;
/** \brief mask, indicating whether the point was in the indices list or not.*/
std::vector<unsigned char> mask_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
}
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/search/impl/organized.hpp>
#endif