313 lines
13 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#ifdef __SSE__
#include <xmmintrin.h> // for __m128
#endif // ifdef __SSE__
#ifdef __AVX__
#include <immintrin.h> // for __m256
#endif // ifdef __AVX__
#include <pcl/sample_consensus/sac_model.h>
#include <pcl/sample_consensus/model_types.h>
namespace pcl
{
/** \brief SampleConsensusModelSphere defines a model for 3D sphere segmentation.
* The model coefficients are defined as:
* - \b center.x : the X coordinate of the sphere's center
* - \b center.y : the Y coordinate of the sphere's center
* - \b center.z : the Z coordinate of the sphere's center
* - \b radius : the sphere's radius
*
* \author Radu B. Rusu
* \ingroup sample_consensus
*/
template <typename PointT>
class SampleConsensusModelSphere : public SampleConsensusModel<PointT>
{
public:
using SampleConsensusModel<PointT>::model_name_;
using SampleConsensusModel<PointT>::input_;
using SampleConsensusModel<PointT>::indices_;
using SampleConsensusModel<PointT>::radius_min_;
using SampleConsensusModel<PointT>::radius_max_;
using SampleConsensusModel<PointT>::error_sqr_dists_;
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
using Ptr = shared_ptr<SampleConsensusModelSphere<PointT> >;
using ConstPtr = shared_ptr<const SampleConsensusModelSphere<PointT>>;
/** \brief Constructor for base SampleConsensusModelSphere.
* \param[in] cloud the input point cloud dataset
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelSphere (const PointCloudConstPtr &cloud,
bool random = false)
: SampleConsensusModel<PointT> (cloud, random)
{
model_name_ = "SampleConsensusModelSphere";
sample_size_ = 4;
model_size_ = 4;
}
/** \brief Constructor for base SampleConsensusModelSphere.
* \param[in] cloud the input point cloud dataset
* \param[in] indices a vector of point indices to be used from \a cloud
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelSphere (const PointCloudConstPtr &cloud,
const Indices &indices,
bool random = false)
: SampleConsensusModel<PointT> (cloud, indices, random)
{
model_name_ = "SampleConsensusModelSphere";
sample_size_ = 4;
model_size_ = 4;
}
/** \brief Empty destructor */
~SampleConsensusModelSphere () {}
/** \brief Copy constructor.
* \param[in] source the model to copy into this
*/
SampleConsensusModelSphere (const SampleConsensusModelSphere &source) :
SampleConsensusModel<PointT> ()
{
*this = source;
model_name_ = "SampleConsensusModelSphere";
}
/** \brief Copy constructor.
* \param[in] source the model to copy into this
*/
inline SampleConsensusModelSphere&
operator = (const SampleConsensusModelSphere &source)
{
SampleConsensusModel<PointT>::operator=(source);
return (*this);
}
/** \brief Check whether the given index samples can form a valid sphere model, compute the model
* coefficients from these samples and store them internally in model_coefficients.
* The sphere coefficients are: x, y, z, R.
* \param[in] samples the point indices found as possible good candidates for creating a valid model
* \param[out] model_coefficients the resultant model coefficients
*/
bool
computeModelCoefficients (const Indices &samples,
Eigen::VectorXf &model_coefficients) const override;
/** \brief Compute all distances from the cloud data to a given sphere model.
* \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
* \param[out] distances the resultant estimated distances
*/
void
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
std::vector<double> &distances) const override;
/** \brief Select all the points which respect the given model coefficients as inliers.
* \param[in] model_coefficients the coefficients of a sphere model that we need to compute distances to
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
* \param[out] inliers the resultant model inliers
*/
void
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold,
Indices &inliers) override;
/** \brief Count all the points which respect the given model coefficients as inliers.
*
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
* \return the resultant number of inliers
*/
std::size_t
countWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold) const override;
/** \brief Recompute the sphere coefficients using the given inlier set and return them to the user.
* @note: these are the coefficients of the sphere model after refinement (e.g. after SVD)
* \param[in] inliers the data inliers found as supporting the model
* \param[in] model_coefficients the initial guess for the optimization
* \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
*/
void
optimizeModelCoefficients (const Indices &inliers,
const Eigen::VectorXf &model_coefficients,
Eigen::VectorXf &optimized_coefficients) const override;
/** \brief Create a new point cloud with inliers projected onto the sphere model.
* \param[in] inliers the data inliers that we want to project on the sphere model
* \param[in] model_coefficients the coefficients of a sphere model
* \param[out] projected_points the resultant projected points
* \param[in] copy_data_fields set to true if we need to copy the other data fields
* \todo implement this.
*/
void
projectPoints (const Indices &inliers,
const Eigen::VectorXf &model_coefficients,
PointCloud &projected_points,
bool copy_data_fields = true) const override;
/** \brief Verify whether a subset of indices verifies the given sphere model coefficients.
* \param[in] indices the data indices that need to be tested against the sphere model
* \param[in] model_coefficients the sphere model coefficients
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
*/
bool
doSamplesVerifyModel (const std::set<index_t> &indices,
const Eigen::VectorXf &model_coefficients,
const double threshold) const override;
/** \brief Return a unique id for this model (SACMODEL_SPHERE). */
inline pcl::SacModel getModelType () const override { return (SACMODEL_SPHERE); }
protected:
using SampleConsensusModel<PointT>::sample_size_;
using SampleConsensusModel<PointT>::model_size_;
/** \brief Check whether a model is valid given the user constraints.
* \param[in] model_coefficients the set of model coefficients
*/
bool
isModelValid (const Eigen::VectorXf &model_coefficients) const override
{
if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
return (false);
if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[3] < radius_min_)
return (false);
if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[3] > radius_max_)
return (false);
return (true);
}
/** \brief Check if a sample of indices results in a good sample of points
* indices.
* \param[in] samples the resultant index samples
*/
bool
isSampleGood(const Indices &samples) const override;
/** This implementation uses no SIMD instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceStandard (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__)
/** This implementation uses SSE, SSE2, and SSE4.1 instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceSSE (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#endif
#if defined (__AVX__) && defined (__AVX2__)
/** This implementation uses AVX and AVX2 instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceAVX (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#endif
private:
struct OptimizationFunctor : pcl::Functor<float>
{
/** Functor constructor
* \param[in] indices the indices of data points to evaluate
* \param[in] estimator pointer to the estimator object
*/
OptimizationFunctor (const pcl::SampleConsensusModelSphere<PointT> *model, const Indices& indices) :
pcl::Functor<float> (indices.size ()), model_ (model), indices_ (indices) {}
/** Cost function to be minimized
* \param[in] x the variables array
* \param[out] fvec the resultant functions evaluations
* \return 0
*/
int
operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const
{
Eigen::Vector4f cen_t;
cen_t[3] = 0;
for (int i = 0; i < values (); ++i)
{
// Compute the difference between the center of the sphere and the datapoint X_i
cen_t.head<3>() = (*model_->input_)[indices_[i]].getVector3fMap() - x.head<3>();
// g = sqrt ((x-a)^2 + (y-b)^2 + (z-c)^2) - R
fvec[i] = std::sqrt (cen_t.dot (cen_t)) - x[3];
}
return (0);
}
const pcl::SampleConsensusModelSphere<PointT> *model_;
const Indices &indices_;
};
#ifdef __AVX__
inline __m256 sqr_dist8 (const std::size_t i, const __m256 a_vec, const __m256 b_vec, const __m256 c_vec) const;
#endif
#ifdef __SSE__
inline __m128 sqr_dist4 (const std::size_t i, const __m128 a_vec, const __m128 b_vec, const __m128 c_vec) const;
#endif
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/sample_consensus/impl/sac_model_sphere.hpp>
#endif