316 lines
14 KiB
C
316 lines
14 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#ifdef __SSE__
|
||
|
|
#include <xmmintrin.h> // for __m128
|
||
|
|
#endif // ifdef __SSE__
|
||
|
|
#ifdef __AVX__
|
||
|
|
#include <immintrin.h> // for __m256
|
||
|
|
#endif // ifdef __AVX__
|
||
|
|
|
||
|
|
#include <pcl/sample_consensus/sac_model.h>
|
||
|
|
#include <pcl/sample_consensus/model_types.h>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
|
||
|
|
/** \brief Project a point on a planar model given by a set of normalized coefficients
|
||
|
|
* \param[in] p the input point to project
|
||
|
|
* \param[in] model_coefficients the coefficients of the plane (a, b, c, d) that satisfy ax+by+cz+d=0
|
||
|
|
* \param[out] q the resultant projected point
|
||
|
|
*/
|
||
|
|
template <typename Point> inline void
|
||
|
|
projectPoint (const Point &p, const Eigen::Vector4f &model_coefficients, Point &q)
|
||
|
|
{
|
||
|
|
// Calculate the distance from the point to the plane
|
||
|
|
Eigen::Vector4f pp (p.x, p.y, p.z, 1);
|
||
|
|
// use normalized coefficients to calculate the scalar projection
|
||
|
|
float distance_to_plane = pp.dot(model_coefficients);
|
||
|
|
|
||
|
|
|
||
|
|
//TODO: Why doesn't getVector4Map work here?
|
||
|
|
//Eigen::Vector4f q_e = q.getVector4fMap ();
|
||
|
|
//q_e = pp - model_coefficients * distance_to_plane;
|
||
|
|
|
||
|
|
Eigen::Vector4f q_e = pp - distance_to_plane * model_coefficients;
|
||
|
|
q.x = q_e[0];
|
||
|
|
q.y = q_e[1];
|
||
|
|
q.z = q_e[2];
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
|
||
|
|
* \param p a point
|
||
|
|
* \param a the normalized <i>a</i> coefficient of a plane
|
||
|
|
* \param b the normalized <i>b</i> coefficient of a plane
|
||
|
|
* \param c the normalized <i>c</i> coefficient of a plane
|
||
|
|
* \param d the normalized <i>d</i> coefficient of a plane
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename Point> inline double
|
||
|
|
pointToPlaneDistanceSigned (const Point &p, double a, double b, double c, double d)
|
||
|
|
{
|
||
|
|
return (a * p.x + b * p.y + c * p.z + d);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
|
||
|
|
* \param p a point
|
||
|
|
* \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename Point> inline double
|
||
|
|
pointToPlaneDistanceSigned (const Point &p, const Eigen::Vector4f &plane_coefficients)
|
||
|
|
{
|
||
|
|
return ( plane_coefficients[0] * p.x + plane_coefficients[1] * p.y + plane_coefficients[2] * p.z + plane_coefficients[3] );
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
|
||
|
|
* \param p a point
|
||
|
|
* \param a the normalized <i>a</i> coefficient of a plane
|
||
|
|
* \param b the normalized <i>b</i> coefficient of a plane
|
||
|
|
* \param c the normalized <i>c</i> coefficient of a plane
|
||
|
|
* \param d the normalized <i>d</i> coefficient of a plane
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename Point> inline double
|
||
|
|
pointToPlaneDistance (const Point &p, double a, double b, double c, double d)
|
||
|
|
{
|
||
|
|
return (std::abs (pointToPlaneDistanceSigned (p, a, b, c, d)) );
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
|
||
|
|
* \param p a point
|
||
|
|
* \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename Point> inline double
|
||
|
|
pointToPlaneDistance (const Point &p, const Eigen::Vector4f &plane_coefficients)
|
||
|
|
{
|
||
|
|
return ( std::abs (pointToPlaneDistanceSigned (p, plane_coefficients)) );
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief SampleConsensusModelPlane defines a model for 3D plane segmentation.
|
||
|
|
* The model coefficients are defined as:
|
||
|
|
* - \b a : the X coordinate of the plane's normal (normalized)
|
||
|
|
* - \b b : the Y coordinate of the plane's normal (normalized)
|
||
|
|
* - \b c : the Z coordinate of the plane's normal (normalized)
|
||
|
|
* - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
|
||
|
|
*
|
||
|
|
* \author Radu B. Rusu
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename PointT>
|
||
|
|
class SampleConsensusModelPlane : public SampleConsensusModel<PointT>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using SampleConsensusModel<PointT>::model_name_;
|
||
|
|
using SampleConsensusModel<PointT>::input_;
|
||
|
|
using SampleConsensusModel<PointT>::indices_;
|
||
|
|
using SampleConsensusModel<PointT>::error_sqr_dists_;
|
||
|
|
using SampleConsensusModel<PointT>::isModelValid;
|
||
|
|
|
||
|
|
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
|
||
|
|
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
|
||
|
|
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr<SampleConsensusModelPlane<PointT> >;
|
||
|
|
using ConstPtr = shared_ptr<const SampleConsensusModelPlane<PointT>>;
|
||
|
|
|
||
|
|
/** \brief Constructor for base SampleConsensusModelPlane.
|
||
|
|
* \param[in] cloud the input point cloud dataset
|
||
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
||
|
|
*/
|
||
|
|
SampleConsensusModelPlane (const PointCloudConstPtr &cloud, bool random = false)
|
||
|
|
: SampleConsensusModel<PointT> (cloud, random)
|
||
|
|
{
|
||
|
|
model_name_ = "SampleConsensusModelPlane";
|
||
|
|
sample_size_ = 3;
|
||
|
|
model_size_ = 4;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Constructor for base SampleConsensusModelPlane.
|
||
|
|
* \param[in] cloud the input point cloud dataset
|
||
|
|
* \param[in] indices a vector of point indices to be used from \a cloud
|
||
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
||
|
|
*/
|
||
|
|
SampleConsensusModelPlane (const PointCloudConstPtr &cloud,
|
||
|
|
const Indices &indices,
|
||
|
|
bool random = false)
|
||
|
|
: SampleConsensusModel<PointT> (cloud, indices, random)
|
||
|
|
{
|
||
|
|
model_name_ = "SampleConsensusModelPlane";
|
||
|
|
sample_size_ = 3;
|
||
|
|
model_size_ = 4;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
~SampleConsensusModelPlane () {}
|
||
|
|
|
||
|
|
/** \brief Check whether the given index samples can form a valid plane model, compute the model coefficients from
|
||
|
|
* these samples and store them internally in model_coefficients_. The plane coefficients are:
|
||
|
|
* a, b, c, d (ax+by+cz+d=0)
|
||
|
|
* \param[in] samples the point indices found as possible good candidates for creating a valid model
|
||
|
|
* \param[out] model_coefficients the resultant model coefficients
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
computeModelCoefficients (const Indices &samples,
|
||
|
|
Eigen::VectorXf &model_coefficients) const override;
|
||
|
|
|
||
|
|
/** \brief Compute all distances from the cloud data to a given plane model.
|
||
|
|
* \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
|
||
|
|
* \param[out] distances the resultant estimated distances
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
|
||
|
|
std::vector<double> &distances) const override;
|
||
|
|
|
||
|
|
/** \brief Select all the points which respect the given model coefficients as inliers.
|
||
|
|
* \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
|
||
|
|
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
* \param[out] inliers the resultant model inliers
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold,
|
||
|
|
Indices &inliers) override;
|
||
|
|
|
||
|
|
/** \brief Count all the points which respect the given model coefficients as inliers.
|
||
|
|
*
|
||
|
|
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
|
||
|
|
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
* \return the resultant number of inliers
|
||
|
|
*/
|
||
|
|
std::size_t
|
||
|
|
countWithinDistance (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold) const override;
|
||
|
|
|
||
|
|
/** \brief Recompute the plane coefficients using the given inlier set and return them to the user.
|
||
|
|
* @note: these are the coefficients of the plane model after refinement (e.g. after SVD)
|
||
|
|
* \param[in] inliers the data inliers found as supporting the model
|
||
|
|
* \param[in] model_coefficients the initial guess for the model coefficients
|
||
|
|
* \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
optimizeModelCoefficients (const Indices &inliers,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
Eigen::VectorXf &optimized_coefficients) const override;
|
||
|
|
|
||
|
|
/** \brief Create a new point cloud with inliers projected onto the plane model.
|
||
|
|
* \param[in] inliers the data inliers that we want to project on the plane model
|
||
|
|
* \param[in] model_coefficients the *normalized* coefficients of a plane model
|
||
|
|
* \param[out] projected_points the resultant projected points
|
||
|
|
* \param[in] copy_data_fields set to true if we need to copy the other data fields
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
projectPoints (const Indices &inliers,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
PointCloud &projected_points,
|
||
|
|
bool copy_data_fields = true) const override;
|
||
|
|
|
||
|
|
/** \brief Verify whether a subset of indices verifies the given plane model coefficients.
|
||
|
|
* \param[in] indices the data indices that need to be tested against the plane model
|
||
|
|
* \param[in] model_coefficients the plane model coefficients
|
||
|
|
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
doSamplesVerifyModel (const std::set<index_t> &indices,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold) const override;
|
||
|
|
|
||
|
|
/** \brief Return a unique id for this model (SACMODEL_PLANE). */
|
||
|
|
inline pcl::SacModel
|
||
|
|
getModelType () const override { return (SACMODEL_PLANE); }
|
||
|
|
|
||
|
|
protected:
|
||
|
|
using SampleConsensusModel<PointT>::sample_size_;
|
||
|
|
using SampleConsensusModel<PointT>::model_size_;
|
||
|
|
|
||
|
|
/** This implementation uses no SIMD instructions. It is not intended for normal use.
|
||
|
|
* See countWithinDistance which automatically uses the fastest implementation.
|
||
|
|
*/
|
||
|
|
std::size_t
|
||
|
|
countWithinDistanceStandard (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold,
|
||
|
|
std::size_t i = 0) const;
|
||
|
|
|
||
|
|
#if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__)
|
||
|
|
/** This implementation uses SSE, SSE2, and SSE4.1 instructions. It is not intended for normal use.
|
||
|
|
* See countWithinDistance which automatically uses the fastest implementation.
|
||
|
|
*/
|
||
|
|
std::size_t
|
||
|
|
countWithinDistanceSSE (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold,
|
||
|
|
std::size_t i = 0) const;
|
||
|
|
#endif
|
||
|
|
|
||
|
|
#if defined (__AVX__) && defined (__AVX2__)
|
||
|
|
/** This implementation uses AVX and AVX2 instructions. It is not intended for normal use.
|
||
|
|
* See countWithinDistance which automatically uses the fastest implementation.
|
||
|
|
*/
|
||
|
|
std::size_t
|
||
|
|
countWithinDistanceAVX (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold,
|
||
|
|
std::size_t i = 0) const;
|
||
|
|
#endif
|
||
|
|
|
||
|
|
#ifdef __AVX__
|
||
|
|
inline __m256 dist8 (const std::size_t i, const __m256 &a_vec, const __m256 &b_vec, const __m256 &c_vec, const __m256 &d_vec, const __m256 &abs_help) const;
|
||
|
|
#endif
|
||
|
|
|
||
|
|
#ifdef __SSE__
|
||
|
|
inline __m128 dist4 (const std::size_t i, const __m128 &a_vec, const __m128 &b_vec, const __m128 &c_vec, const __m128 &d_vec, const __m128 &abs_help) const;
|
||
|
|
#endif
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** \brief Check if a sample of indices results in a good sample of points
|
||
|
|
* indices.
|
||
|
|
* \param[in] samples the resultant index samples
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
isSampleGood (const Indices &samples) const override;
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/sample_consensus/impl/sac_model_plane.hpp>
|
||
|
|
#endif
|