316 lines
14 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#ifdef __SSE__
#include <xmmintrin.h> // for __m128
#endif // ifdef __SSE__
#ifdef __AVX__
#include <immintrin.h> // for __m256
#endif // ifdef __AVX__
#include <pcl/sample_consensus/sac_model.h>
#include <pcl/sample_consensus/model_types.h>
namespace pcl
{
/** \brief Project a point on a planar model given by a set of normalized coefficients
* \param[in] p the input point to project
* \param[in] model_coefficients the coefficients of the plane (a, b, c, d) that satisfy ax+by+cz+d=0
* \param[out] q the resultant projected point
*/
template <typename Point> inline void
projectPoint (const Point &p, const Eigen::Vector4f &model_coefficients, Point &q)
{
// Calculate the distance from the point to the plane
Eigen::Vector4f pp (p.x, p.y, p.z, 1);
// use normalized coefficients to calculate the scalar projection
float distance_to_plane = pp.dot(model_coefficients);
//TODO: Why doesn't getVector4Map work here?
//Eigen::Vector4f q_e = q.getVector4fMap ();
//q_e = pp - model_coefficients * distance_to_plane;
Eigen::Vector4f q_e = pp - distance_to_plane * model_coefficients;
q.x = q_e[0];
q.y = q_e[1];
q.z = q_e[2];
}
/** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
* \param p a point
* \param a the normalized <i>a</i> coefficient of a plane
* \param b the normalized <i>b</i> coefficient of a plane
* \param c the normalized <i>c</i> coefficient of a plane
* \param d the normalized <i>d</i> coefficient of a plane
* \ingroup sample_consensus
*/
template <typename Point> inline double
pointToPlaneDistanceSigned (const Point &p, double a, double b, double c, double d)
{
return (a * p.x + b * p.y + c * p.z + d);
}
/** \brief Get the distance from a point to a plane (signed) defined by ax+by+cz+d=0
* \param p a point
* \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
* \ingroup sample_consensus
*/
template <typename Point> inline double
pointToPlaneDistanceSigned (const Point &p, const Eigen::Vector4f &plane_coefficients)
{
return ( plane_coefficients[0] * p.x + plane_coefficients[1] * p.y + plane_coefficients[2] * p.z + plane_coefficients[3] );
}
/** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
* \param p a point
* \param a the normalized <i>a</i> coefficient of a plane
* \param b the normalized <i>b</i> coefficient of a plane
* \param c the normalized <i>c</i> coefficient of a plane
* \param d the normalized <i>d</i> coefficient of a plane
* \ingroup sample_consensus
*/
template <typename Point> inline double
pointToPlaneDistance (const Point &p, double a, double b, double c, double d)
{
return (std::abs (pointToPlaneDistanceSigned (p, a, b, c, d)) );
}
/** \brief Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0
* \param p a point
* \param plane_coefficients the normalized coefficients (a, b, c, d) of a plane
* \ingroup sample_consensus
*/
template <typename Point> inline double
pointToPlaneDistance (const Point &p, const Eigen::Vector4f &plane_coefficients)
{
return ( std::abs (pointToPlaneDistanceSigned (p, plane_coefficients)) );
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief SampleConsensusModelPlane defines a model for 3D plane segmentation.
* The model coefficients are defined as:
* - \b a : the X coordinate of the plane's normal (normalized)
* - \b b : the Y coordinate of the plane's normal (normalized)
* - \b c : the Z coordinate of the plane's normal (normalized)
* - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation
*
* \author Radu B. Rusu
* \ingroup sample_consensus
*/
template <typename PointT>
class SampleConsensusModelPlane : public SampleConsensusModel<PointT>
{
public:
using SampleConsensusModel<PointT>::model_name_;
using SampleConsensusModel<PointT>::input_;
using SampleConsensusModel<PointT>::indices_;
using SampleConsensusModel<PointT>::error_sqr_dists_;
using SampleConsensusModel<PointT>::isModelValid;
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
using Ptr = shared_ptr<SampleConsensusModelPlane<PointT> >;
using ConstPtr = shared_ptr<const SampleConsensusModelPlane<PointT>>;
/** \brief Constructor for base SampleConsensusModelPlane.
* \param[in] cloud the input point cloud dataset
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelPlane (const PointCloudConstPtr &cloud, bool random = false)
: SampleConsensusModel<PointT> (cloud, random)
{
model_name_ = "SampleConsensusModelPlane";
sample_size_ = 3;
model_size_ = 4;
}
/** \brief Constructor for base SampleConsensusModelPlane.
* \param[in] cloud the input point cloud dataset
* \param[in] indices a vector of point indices to be used from \a cloud
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelPlane (const PointCloudConstPtr &cloud,
const Indices &indices,
bool random = false)
: SampleConsensusModel<PointT> (cloud, indices, random)
{
model_name_ = "SampleConsensusModelPlane";
sample_size_ = 3;
model_size_ = 4;
}
/** \brief Empty destructor */
~SampleConsensusModelPlane () {}
/** \brief Check whether the given index samples can form a valid plane model, compute the model coefficients from
* these samples and store them internally in model_coefficients_. The plane coefficients are:
* a, b, c, d (ax+by+cz+d=0)
* \param[in] samples the point indices found as possible good candidates for creating a valid model
* \param[out] model_coefficients the resultant model coefficients
*/
bool
computeModelCoefficients (const Indices &samples,
Eigen::VectorXf &model_coefficients) const override;
/** \brief Compute all distances from the cloud data to a given plane model.
* \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
* \param[out] distances the resultant estimated distances
*/
void
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
std::vector<double> &distances) const override;
/** \brief Select all the points which respect the given model coefficients as inliers.
* \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
* \param[out] inliers the resultant model inliers
*/
void
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold,
Indices &inliers) override;
/** \brief Count all the points which respect the given model coefficients as inliers.
*
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
* \return the resultant number of inliers
*/
std::size_t
countWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold) const override;
/** \brief Recompute the plane coefficients using the given inlier set and return them to the user.
* @note: these are the coefficients of the plane model after refinement (e.g. after SVD)
* \param[in] inliers the data inliers found as supporting the model
* \param[in] model_coefficients the initial guess for the model coefficients
* \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
*/
void
optimizeModelCoefficients (const Indices &inliers,
const Eigen::VectorXf &model_coefficients,
Eigen::VectorXf &optimized_coefficients) const override;
/** \brief Create a new point cloud with inliers projected onto the plane model.
* \param[in] inliers the data inliers that we want to project on the plane model
* \param[in] model_coefficients the *normalized* coefficients of a plane model
* \param[out] projected_points the resultant projected points
* \param[in] copy_data_fields set to true if we need to copy the other data fields
*/
void
projectPoints (const Indices &inliers,
const Eigen::VectorXf &model_coefficients,
PointCloud &projected_points,
bool copy_data_fields = true) const override;
/** \brief Verify whether a subset of indices verifies the given plane model coefficients.
* \param[in] indices the data indices that need to be tested against the plane model
* \param[in] model_coefficients the plane model coefficients
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
*/
bool
doSamplesVerifyModel (const std::set<index_t> &indices,
const Eigen::VectorXf &model_coefficients,
const double threshold) const override;
/** \brief Return a unique id for this model (SACMODEL_PLANE). */
inline pcl::SacModel
getModelType () const override { return (SACMODEL_PLANE); }
protected:
using SampleConsensusModel<PointT>::sample_size_;
using SampleConsensusModel<PointT>::model_size_;
/** This implementation uses no SIMD instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceStandard (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__)
/** This implementation uses SSE, SSE2, and SSE4.1 instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceSSE (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#endif
#if defined (__AVX__) && defined (__AVX2__)
/** This implementation uses AVX and AVX2 instructions. It is not intended for normal use.
* See countWithinDistance which automatically uses the fastest implementation.
*/
std::size_t
countWithinDistanceAVX (const Eigen::VectorXf &model_coefficients,
const double threshold,
std::size_t i = 0) const;
#endif
#ifdef __AVX__
inline __m256 dist8 (const std::size_t i, const __m256 &a_vec, const __m256 &b_vec, const __m256 &c_vec, const __m256 &d_vec, const __m256 &abs_help) const;
#endif
#ifdef __SSE__
inline __m128 dist4 (const std::size_t i, const __m128 &a_vec, const __m128 &b_vec, const __m128 &c_vec, const __m128 &d_vec, const __m128 &abs_help) const;
#endif
private:
/** \brief Check if a sample of indices results in a good sample of points
* indices.
* \param[in] samples the resultant index samples
*/
bool
isSampleGood (const Indices &samples) const override;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/sample_consensus/impl/sac_model_plane.hpp>
#endif