274 lines
12 KiB
C
274 lines
12 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/sample_consensus/sac_model.h>
|
||
|
|
#include <pcl/sample_consensus/model_types.h>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
/** \brief SampleConsensusModelCircle3D defines a model for 3D circle segmentation.
|
||
|
|
*
|
||
|
|
* The model coefficients are defined as:
|
||
|
|
* - \b center.x : the X coordinate of the circle's center
|
||
|
|
* - \b center.y : the Y coordinate of the circle's center
|
||
|
|
* - \b center.z : the Z coordinate of the circle's center
|
||
|
|
* - \b radius : the circle's radius
|
||
|
|
* - \b normal.x : the X coordinate of the normal's direction
|
||
|
|
* - \b normal.y : the Y coordinate of the normal's direction
|
||
|
|
* - \b normal.z : the Z coordinate of the normal's direction
|
||
|
|
*
|
||
|
|
* \author Raoul Hoffmann, Karol Hausman, Radu B. Rusu
|
||
|
|
* \ingroup sample_consensus
|
||
|
|
*/
|
||
|
|
template <typename PointT>
|
||
|
|
class SampleConsensusModelCircle3D : public SampleConsensusModel<PointT>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using SampleConsensusModel<PointT>::model_name_;
|
||
|
|
using SampleConsensusModel<PointT>::input_;
|
||
|
|
using SampleConsensusModel<PointT>::indices_;
|
||
|
|
using SampleConsensusModel<PointT>::radius_min_;
|
||
|
|
using SampleConsensusModel<PointT>::radius_max_;
|
||
|
|
|
||
|
|
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
|
||
|
|
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
|
||
|
|
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr<SampleConsensusModelCircle3D<PointT> >;
|
||
|
|
using ConstPtr = shared_ptr<const SampleConsensusModelCircle3D<PointT> >;
|
||
|
|
|
||
|
|
/** \brief Constructor for base SampleConsensusModelCircle3D.
|
||
|
|
* \param[in] cloud the input point cloud dataset
|
||
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
||
|
|
*/
|
||
|
|
SampleConsensusModelCircle3D (const PointCloudConstPtr &cloud,
|
||
|
|
bool random = false)
|
||
|
|
: SampleConsensusModel<PointT> (cloud, random)
|
||
|
|
{
|
||
|
|
model_name_ = "SampleConsensusModelCircle3D";
|
||
|
|
sample_size_ = 3;
|
||
|
|
model_size_ = 7;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Constructor for base SampleConsensusModelCircle3D.
|
||
|
|
* \param[in] cloud the input point cloud dataset
|
||
|
|
* \param[in] indices a vector of point indices to be used from \a cloud
|
||
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
||
|
|
*/
|
||
|
|
SampleConsensusModelCircle3D (const PointCloudConstPtr &cloud,
|
||
|
|
const Indices &indices,
|
||
|
|
bool random = false)
|
||
|
|
: SampleConsensusModel<PointT> (cloud, indices, random)
|
||
|
|
{
|
||
|
|
model_name_ = "SampleConsensusModelCircle3D";
|
||
|
|
sample_size_ = 3;
|
||
|
|
model_size_ = 7;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
~SampleConsensusModelCircle3D () {}
|
||
|
|
|
||
|
|
/** \brief Copy constructor.
|
||
|
|
* \param[in] source the model to copy into this
|
||
|
|
*/
|
||
|
|
SampleConsensusModelCircle3D (const SampleConsensusModelCircle3D &source) :
|
||
|
|
SampleConsensusModel<PointT> ()
|
||
|
|
{
|
||
|
|
*this = source;
|
||
|
|
model_name_ = "SampleConsensusModelCircle3D";
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Copy constructor.
|
||
|
|
* \param[in] source the model to copy into this
|
||
|
|
*/
|
||
|
|
inline SampleConsensusModelCircle3D&
|
||
|
|
operator = (const SampleConsensusModelCircle3D &source)
|
||
|
|
{
|
||
|
|
SampleConsensusModel<PointT>::operator=(source);
|
||
|
|
return (*this);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Check whether the given index samples can form a valid 2D circle model, compute the model coefficients
|
||
|
|
* from these samples and store them in model_coefficients. The circle coefficients are: x, y, R.
|
||
|
|
* \param[in] samples the point indices found as possible good candidates for creating a valid model
|
||
|
|
* \param[out] model_coefficients the resultant model coefficients
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
computeModelCoefficients (const Indices &samples,
|
||
|
|
Eigen::VectorXf &model_coefficients) const override;
|
||
|
|
|
||
|
|
/** \brief Compute all distances from the cloud data to a given 3D circle model.
|
||
|
|
* \param[in] model_coefficients the coefficients of a 2D circle model that we need to compute distances to
|
||
|
|
* \param[out] distances the resultant estimated distances
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
|
||
|
|
std::vector<double> &distances) const override;
|
||
|
|
|
||
|
|
/** \brief Compute all distances from the cloud data to a given 3D circle model.
|
||
|
|
* \param[in] model_coefficients the coefficients of a 3D circle model that we need to compute distances to
|
||
|
|
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
* \param[out] inliers the resultant model inliers
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold,
|
||
|
|
Indices &inliers) override;
|
||
|
|
|
||
|
|
/** \brief Count all the points which respect the given model coefficients as inliers.
|
||
|
|
*
|
||
|
|
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
|
||
|
|
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
* \return the resultant number of inliers
|
||
|
|
*/
|
||
|
|
std::size_t
|
||
|
|
countWithinDistance (const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold) const override;
|
||
|
|
|
||
|
|
/** \brief Recompute the 3d circle coefficients using the given inlier set and return them to the user.
|
||
|
|
* @note: these are the coefficients of the 3d circle model after refinement (e.g. after SVD)
|
||
|
|
* \param[in] inliers the data inliers found as supporting the model
|
||
|
|
* \param[in] model_coefficients the initial guess for the optimization
|
||
|
|
* \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
optimizeModelCoefficients (const Indices &inliers,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
Eigen::VectorXf &optimized_coefficients) const override;
|
||
|
|
|
||
|
|
/** \brief Create a new point cloud with inliers projected onto the 3d circle model.
|
||
|
|
* \param[in] inliers the data inliers that we want to project on the 3d circle model
|
||
|
|
* \param[in] model_coefficients the coefficients of a 3d circle model
|
||
|
|
* \param[out] projected_points the resultant projected points
|
||
|
|
* \param[in] copy_data_fields set to true if we need to copy the other data fields
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
projectPoints (const Indices &inliers,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
PointCloud &projected_points,
|
||
|
|
bool copy_data_fields = true) const override;
|
||
|
|
|
||
|
|
/** \brief Verify whether a subset of indices verifies the given 3d circle model coefficients.
|
||
|
|
* \param[in] indices the data indices that need to be tested against the 3d circle model
|
||
|
|
* \param[in] model_coefficients the 3d circle model coefficients
|
||
|
|
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
doSamplesVerifyModel (const std::set<index_t> &indices,
|
||
|
|
const Eigen::VectorXf &model_coefficients,
|
||
|
|
const double threshold) const override;
|
||
|
|
|
||
|
|
/** \brief Return a unique id for this model (SACMODEL_CIRCLE3D). */
|
||
|
|
inline pcl::SacModel
|
||
|
|
getModelType () const override { return (SACMODEL_CIRCLE3D); }
|
||
|
|
|
||
|
|
protected:
|
||
|
|
using SampleConsensusModel<PointT>::sample_size_;
|
||
|
|
using SampleConsensusModel<PointT>::model_size_;
|
||
|
|
|
||
|
|
/** \brief Check whether a model is valid given the user constraints.
|
||
|
|
* \param[in] model_coefficients the set of model coefficients
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
isModelValid (const Eigen::VectorXf &model_coefficients) const override;
|
||
|
|
|
||
|
|
/** \brief Check if a sample of indices results in a good sample of points indices.
|
||
|
|
* \param[in] samples the resultant index samples
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
isSampleGood(const Indices &samples) const override;
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** \brief Functor for the optimization function */
|
||
|
|
struct OptimizationFunctor : pcl::Functor<double>
|
||
|
|
{
|
||
|
|
/** Functor constructor
|
||
|
|
* \param[in] indices the indices of data points to evaluate
|
||
|
|
* \param[in] estimator pointer to the estimator object
|
||
|
|
*/
|
||
|
|
OptimizationFunctor (const pcl::SampleConsensusModelCircle3D<PointT> *model, const Indices& indices) :
|
||
|
|
pcl::Functor<double> (indices.size ()), model_ (model), indices_ (indices) {}
|
||
|
|
|
||
|
|
/** Cost function to be minimized
|
||
|
|
* \param[in] x the variables array
|
||
|
|
* \param[out] fvec the resultant functions evaluations
|
||
|
|
* \return 0
|
||
|
|
*/
|
||
|
|
int operator() (const Eigen::VectorXd &x, Eigen::VectorXd &fvec) const
|
||
|
|
{
|
||
|
|
for (int i = 0; i < values (); ++i)
|
||
|
|
{
|
||
|
|
// what i have:
|
||
|
|
// P : Sample Point
|
||
|
|
Eigen::Vector3d P =
|
||
|
|
(*model_->input_)[indices_[i]].getVector3fMap().template cast<double>();
|
||
|
|
// C : Circle Center
|
||
|
|
Eigen::Vector3d C (x[0], x[1], x[2]);
|
||
|
|
// N : Circle (Plane) Normal
|
||
|
|
Eigen::Vector3d N (x[4], x[5], x[6]);
|
||
|
|
// r : Radius
|
||
|
|
double r = x[3];
|
||
|
|
|
||
|
|
Eigen::Vector3d helperVectorPC = P - C;
|
||
|
|
// 1.1. get line parameter
|
||
|
|
//float lambda = (helperVectorPC.dot(N)) / N.squaredNorm() ;
|
||
|
|
double lambda = (-(helperVectorPC.dot (N))) / N.dot (N);
|
||
|
|
// Projected Point on plane
|
||
|
|
Eigen::Vector3d P_proj = P + lambda * N;
|
||
|
|
Eigen::Vector3d helperVectorP_projC = P_proj - C;
|
||
|
|
|
||
|
|
// K : Point on Circle
|
||
|
|
Eigen::Vector3d K = C + r * helperVectorP_projC.normalized ();
|
||
|
|
Eigen::Vector3d distanceVector = P - K;
|
||
|
|
|
||
|
|
fvec[i] = distanceVector.norm ();
|
||
|
|
}
|
||
|
|
return (0);
|
||
|
|
}
|
||
|
|
|
||
|
|
const pcl::SampleConsensusModelCircle3D<PointT> *model_;
|
||
|
|
const Indices &indices_;
|
||
|
|
};
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/sample_consensus/impl/sac_model_circle3d.hpp>
|
||
|
|
#endif
|