166 lines
6.2 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
#define PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_
#include <pcl/sample_consensus/msac.h>
//////////////////////////////////////////////////////////////////////////
template <typename PointT> bool
pcl::MEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
{
// Warn and exit if no threshold was set
if (threshold_ == std::numeric_limits<double>::max())
{
PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] No threshold set!\n");
return (false);
}
iterations_ = 0;
double d_best_penalty = std::numeric_limits<double>::max();
double k = 1.0;
Indices selection;
Eigen::VectorXf model_coefficients (sac_model_->getModelSize ());
std::vector<double> distances;
int n_inliers_count = 0;
unsigned skipped_count = 0;
// suppress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters!
const unsigned max_skip = max_iterations_ * 10;
// Iterate
while (iterations_ < k && skipped_count < max_skip)
{
// Get X samples which satisfy the model criteria
sac_model_->getSamples (iterations_, selection);
if (selection.empty ()) break;
// Search for inliers in the point cloud for the current plane model M
if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
{
//iterations_++;
++ skipped_count;
continue;
}
double d_cur_penalty = 0;
// Iterate through the 3d points and calculate the distances from them to the model
sac_model_->getDistancesToModel (model_coefficients, distances);
if (distances.empty () && k > 1.0)
continue;
for (const double &distance : distances)
d_cur_penalty += (std::min) (distance, threshold_);
// Better match ?
if (d_cur_penalty < d_best_penalty)
{
d_best_penalty = d_cur_penalty;
// Save the current model/coefficients selection as being the best so far
model_ = selection;
model_coefficients_ = model_coefficients;
n_inliers_count = 0;
// Need to compute the number of inliers for this model to adapt k
for (const double &distance : distances)
if (distance <= threshold_)
++n_inliers_count;
// Compute the k parameter (k=std::log(z)/std::log(1-w^n))
double w = static_cast<double> (n_inliers_count) / static_cast<double> (sac_model_->getIndices ()->size ());
double p_no_outliers = 1.0 - std::pow (w, static_cast<double> (selection.size ()));
p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers); // Avoid division by -Inf
p_no_outliers = (std::min) (1.0 - std::numeric_limits<double>::epsilon (), p_no_outliers); // Avoid division by 0.
k = std::log (1.0 - probability_) / std::log (p_no_outliers);
}
++iterations_;
if (debug_verbosity_level > 1)
PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast<int> (std::ceil (k)), d_best_penalty);
if (iterations_ > max_iterations_)
{
if (debug_verbosity_level > 0)
PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n");
break;
}
}
if (model_.empty ())
{
if (debug_verbosity_level > 0)
PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Unable to find a solution!\n");
return (false);
}
// Iterate through the 3d points and calculate the distances from them to the model again
sac_model_->getDistancesToModel (model_coefficients_, distances);
Indices &indices = *sac_model_->getIndices ();
if (distances.size () != indices.size ())
{
PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] Estimated distances (%lu) differs than the normal of indices (%lu).\n", distances.size (), indices.size ());
return (false);
}
inliers_.resize (distances.size ());
// Get the inliers for the best model found
n_inliers_count = 0;
for (std::size_t i = 0; i < distances.size (); ++i)
if (distances[i] <= threshold_)
inliers_[n_inliers_count++] = indices[i];
// Resize the inliers vector
inliers_.resize (n_inliers_count);
if (debug_verbosity_level > 0)
PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Model: %lu size, %d inliers.\n", model_.size (), n_inliers_count);
return (true);
}
#define PCL_INSTANTIATE_MEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::MEstimatorSampleConsensus<T>;
#endif // PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_