268 lines
9.2 KiB
C
268 lines
9.2 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/kdtree/kdtree.h>
|
||
|
|
#include <pcl/registration/transformation_validation.h>
|
||
|
|
#include <pcl/search/kdtree.h>
|
||
|
|
#include <pcl/memory.h>
|
||
|
|
#include <pcl/pcl_macros.h>
|
||
|
|
#include <pcl/point_representation.h>
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
namespace registration {
|
||
|
|
/** \brief TransformationValidationEuclidean computes an L2SQR norm between a source and
|
||
|
|
* target dataset.
|
||
|
|
*
|
||
|
|
* To prevent points with bad correspondences to contribute to the overall score, the
|
||
|
|
* class also accepts a maximum_range parameter given via \ref setMaxRange that is used
|
||
|
|
* as a cutoff value for nearest neighbor distance comparisons.
|
||
|
|
*
|
||
|
|
* The output score is normalized with respect to the number of valid correspondences
|
||
|
|
* found.
|
||
|
|
*
|
||
|
|
* Usage example:
|
||
|
|
* \code
|
||
|
|
* pcl::TransformationValidationEuclidean<pcl::PointXYZ, pcl::PointXYZ> tve;
|
||
|
|
* tve.setMaxRange (0.01); // 1cm
|
||
|
|
* double score = tve.validateTransformation (source, target, transformation);
|
||
|
|
* \endcode
|
||
|
|
*
|
||
|
|
* \note The class is templated on the source and target point types as well as on the
|
||
|
|
* output scalar of the transformation matrix (i.e., float or double). Default: float.
|
||
|
|
* \author Radu B. Rusu
|
||
|
|
* \ingroup registration
|
||
|
|
*/
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar = float>
|
||
|
|
class TransformationValidationEuclidean {
|
||
|
|
public:
|
||
|
|
using Matrix4 =
|
||
|
|
typename TransformationValidation<PointSource, PointTarget, Scalar>::Matrix4;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr<TransformationValidation<PointSource, PointTarget, Scalar>>;
|
||
|
|
using ConstPtr =
|
||
|
|
shared_ptr<const TransformationValidation<PointSource, PointTarget, Scalar>>;
|
||
|
|
|
||
|
|
using KdTree = pcl::search::KdTree<PointTarget>;
|
||
|
|
using KdTreePtr = typename KdTree::Ptr;
|
||
|
|
|
||
|
|
using PointRepresentationConstPtr = typename KdTree::PointRepresentationConstPtr;
|
||
|
|
|
||
|
|
using PointCloudSourceConstPtr =
|
||
|
|
typename TransformationValidation<PointSource,
|
||
|
|
PointTarget>::PointCloudSourceConstPtr;
|
||
|
|
using PointCloudTargetConstPtr =
|
||
|
|
typename TransformationValidation<PointSource,
|
||
|
|
PointTarget>::PointCloudTargetConstPtr;
|
||
|
|
|
||
|
|
/** \brief Constructor.
|
||
|
|
* Sets the \a max_range parameter to double::max, \a threshold_ to NaN
|
||
|
|
* and initializes the internal search \a tree to a FLANN kd-tree.
|
||
|
|
*/
|
||
|
|
TransformationValidationEuclidean()
|
||
|
|
: max_range_(std::numeric_limits<double>::max())
|
||
|
|
, threshold_(std::numeric_limits<double>::quiet_NaN())
|
||
|
|
, tree_(new pcl::search::KdTree<PointTarget>)
|
||
|
|
, force_no_recompute_(false)
|
||
|
|
{}
|
||
|
|
|
||
|
|
virtual ~TransformationValidationEuclidean(){};
|
||
|
|
|
||
|
|
/** \brief Set the maximum allowable distance between a point and its correspondence
|
||
|
|
* in the target in order for a correspondence to be considered \a valid. Default:
|
||
|
|
* double::max. \param[in] max_range the new maximum allowable distance
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setMaxRange(double max_range)
|
||
|
|
{
|
||
|
|
max_range_ = max_range;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the maximum allowable distance between a point and its
|
||
|
|
* correspondence, as set by the user.
|
||
|
|
*/
|
||
|
|
inline double
|
||
|
|
getMaxRange()
|
||
|
|
{
|
||
|
|
return (max_range_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the search object used to find correspondences in
|
||
|
|
* the target cloud.
|
||
|
|
* \param[in] tree a pointer to the spatial search object.
|
||
|
|
* \param[in] force_no_recompute If set to true, this tree will NEVER be
|
||
|
|
* recomputed, regardless of calls to setInputTarget. Only use if you are
|
||
|
|
* confident that the tree will be set correctly.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setSearchMethodTarget(const KdTreePtr& tree, bool force_no_recompute = false)
|
||
|
|
{
|
||
|
|
tree_ = tree;
|
||
|
|
force_no_recompute_ = force_no_recompute;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set a threshold for which a specific transformation is considered valid.
|
||
|
|
*
|
||
|
|
* \note Since we're using MSE (Mean Squared Error) as a metric, the threshold
|
||
|
|
* represents the mean Euclidean distance threshold over all nearest neighbors
|
||
|
|
* up to max_range.
|
||
|
|
*
|
||
|
|
* \param[in] threshold the threshold for which a transformation is vali
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setThreshold(double threshold)
|
||
|
|
{
|
||
|
|
threshold_ = threshold;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the threshold for which a specific transformation is valid. */
|
||
|
|
inline double
|
||
|
|
getThreshold()
|
||
|
|
{
|
||
|
|
return (threshold_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Validate the given transformation with respect to the input cloud data, and
|
||
|
|
* return a score.
|
||
|
|
*
|
||
|
|
* \param[in] cloud_src the source point cloud dataset
|
||
|
|
* \param[in] cloud_tgt the target point cloud dataset
|
||
|
|
* \param[out] transformation_matrix the resultant transformation matrix
|
||
|
|
*
|
||
|
|
* \return the score or confidence measure for the given
|
||
|
|
* transformation_matrix with respect to the input data
|
||
|
|
*/
|
||
|
|
double
|
||
|
|
validateTransformation(const PointCloudSourceConstPtr& cloud_src,
|
||
|
|
const PointCloudTargetConstPtr& cloud_tgt,
|
||
|
|
const Matrix4& transformation_matrix) const;
|
||
|
|
|
||
|
|
/** \brief Comparator function for deciding which score is better after running the
|
||
|
|
* validation on multiple transforms.
|
||
|
|
*
|
||
|
|
* \param[in] score1 the first value
|
||
|
|
* \param[in] score2 the second value
|
||
|
|
*
|
||
|
|
* \return true if score1 is better than score2
|
||
|
|
*/
|
||
|
|
virtual bool
|
||
|
|
operator()(const double& score1, const double& score2) const
|
||
|
|
{
|
||
|
|
return (score1 < score2);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Check if the score is valid for a specific transformation.
|
||
|
|
*
|
||
|
|
* \param[in] cloud_src the source point cloud dataset
|
||
|
|
* \param[in] cloud_tgt the target point cloud dataset
|
||
|
|
* \param[out] transformation_matrix the transformation matrix
|
||
|
|
*
|
||
|
|
* \return true if the transformation is valid, false otherwise.
|
||
|
|
*/
|
||
|
|
virtual bool
|
||
|
|
isValid(const PointCloudSourceConstPtr& cloud_src,
|
||
|
|
const PointCloudTargetConstPtr& cloud_tgt,
|
||
|
|
const Matrix4& transformation_matrix) const
|
||
|
|
{
|
||
|
|
if (std::isnan(threshold_)) {
|
||
|
|
PCL_ERROR("[pcl::TransformationValidationEuclidean::isValid] Threshold not set! "
|
||
|
|
"Please use setThreshold () before continuing.\n");
|
||
|
|
return (false);
|
||
|
|
}
|
||
|
|
|
||
|
|
return (validateTransformation(cloud_src, cloud_tgt, transformation_matrix) <
|
||
|
|
threshold_);
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief The maximum allowable distance between a point and its correspondence in
|
||
|
|
* the target in order for a correspondence to be considered \a valid. Default:
|
||
|
|
* double::max.
|
||
|
|
*/
|
||
|
|
double max_range_;
|
||
|
|
|
||
|
|
/** \brief The threshold for which a specific transformation is valid.
|
||
|
|
* Set to NaN by default, as we must require the user to set it.
|
||
|
|
*/
|
||
|
|
double threshold_;
|
||
|
|
|
||
|
|
/** \brief A pointer to the spatial search object. */
|
||
|
|
KdTreePtr tree_;
|
||
|
|
|
||
|
|
/** \brief A flag which, if set, means the tree operating on the target cloud
|
||
|
|
* will never be recomputed*/
|
||
|
|
bool force_no_recompute_;
|
||
|
|
|
||
|
|
/** \brief Internal point representation uses only 3D coordinates for L2 */
|
||
|
|
class MyPointRepresentation : public pcl::PointRepresentation<PointTarget> {
|
||
|
|
using pcl::PointRepresentation<PointTarget>::nr_dimensions_;
|
||
|
|
using pcl::PointRepresentation<PointTarget>::trivial_;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using Ptr = shared_ptr<MyPointRepresentation>;
|
||
|
|
using ConstPtr = shared_ptr<const MyPointRepresentation>;
|
||
|
|
|
||
|
|
MyPointRepresentation()
|
||
|
|
{
|
||
|
|
nr_dimensions_ = 3;
|
||
|
|
trivial_ = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
virtual ~MyPointRepresentation() {}
|
||
|
|
|
||
|
|
virtual void
|
||
|
|
copyToFloatArray(const PointTarget& p, float* out) const
|
||
|
|
{
|
||
|
|
out[0] = p.x;
|
||
|
|
out[1] = p.y;
|
||
|
|
out[2] = p.z;
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
} // namespace registration
|
||
|
|
} // namespace pcl
|
||
|
|
|
||
|
|
#include <pcl/registration/impl/transformation_validation_euclidean.hpp>
|