thirdParty/PCL 1.12.0/include/pcl-1.12/pcl/registration/impl/sample_consensus_prerejective.hpp

350 lines
12 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_REGISTRATION_SAMPLE_CONSENSUS_PREREJECTIVE_HPP_
#define PCL_REGISTRATION_SAMPLE_CONSENSUS_PREREJECTIVE_HPP_
namespace pcl {
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::setSourceFeatures(
const FeatureCloudConstPtr& features)
{
if (features == nullptr || features->empty()) {
PCL_ERROR(
"[pcl::%s::setSourceFeatures] Invalid or empty point cloud dataset given!\n",
getClassName().c_str());
return;
}
input_features_ = features;
}
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::setTargetFeatures(
const FeatureCloudConstPtr& features)
{
if (features == nullptr || features->empty()) {
PCL_ERROR(
"[pcl::%s::setTargetFeatures] Invalid or empty point cloud dataset given!\n",
getClassName().c_str());
return;
}
target_features_ = features;
feature_tree_->setInputCloud(target_features_);
}
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::selectSamples(
const PointCloudSource& cloud, int nr_samples, pcl::Indices& sample_indices)
{
if (nr_samples > static_cast<int>(cloud.size())) {
PCL_ERROR("[pcl::%s::selectSamples] ", getClassName().c_str());
PCL_ERROR("The number of samples (%d) must not be greater than the number of "
"points (%zu)!\n",
nr_samples,
static_cast<std::size_t>(cloud.size()));
return;
}
sample_indices.resize(nr_samples);
int temp_sample;
// Draw random samples until n samples is reached
for (int i = 0; i < nr_samples; i++) {
// Select a random number
sample_indices[i] = getRandomIndex(static_cast<int>(cloud.size()) - i);
// Run trough list of numbers, starting at the lowest, to avoid duplicates
for (int j = 0; j < i; j++) {
// Move value up if it is higher than previous selections to ensure true
// randomness
if (sample_indices[i] >= sample_indices[j]) {
sample_indices[i]++;
}
else {
// The new number is lower, place it at the correct point and break for a sorted
// list
temp_sample = sample_indices[i];
for (int k = i; k > j; k--)
sample_indices[k] = sample_indices[k - 1];
sample_indices[j] = temp_sample;
break;
}
}
}
}
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::findSimilarFeatures(
const pcl::Indices& sample_indices,
std::vector<pcl::Indices>& similar_features,
pcl::Indices& corresponding_indices)
{
// Allocate results
corresponding_indices.resize(sample_indices.size());
std::vector<float> nn_distances(k_correspondences_);
// Loop over the sampled features
for (std::size_t i = 0; i < sample_indices.size(); ++i) {
// Current feature index
const auto& idx = sample_indices[i];
// Find the k nearest feature neighbors to the sampled input feature if they are not
// in the cache already
if (similar_features[idx].empty())
feature_tree_->nearestKSearch(*input_features_,
idx,
k_correspondences_,
similar_features[idx],
nn_distances);
// Select one at random and add it to corresponding_indices
if (k_correspondences_ == 1)
corresponding_indices[i] = similar_features[idx][0];
else
corresponding_indices[i] =
similar_features[idx][getRandomIndex(k_correspondences_)];
}
}
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::computeTransformation(
PointCloudSource& output, const Eigen::Matrix4f& guess)
{
// Some sanity checks first
if (!input_features_) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR(
"No source features were given! Call setSourceFeatures before aligning.\n");
return;
}
if (!target_features_) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR(
"No target features were given! Call setTargetFeatures before aligning.\n");
return;
}
if (input_->size() != input_features_->size()) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR("The source points and source feature points need to be in a one-to-one "
"relationship! Current input cloud sizes: %ld vs %ld.\n",
input_->size(),
input_features_->size());
return;
}
if (target_->size() != target_features_->size()) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR("The target points and target feature points need to be in a one-to-one "
"relationship! Current input cloud sizes: %ld vs %ld.\n",
target_->size(),
target_features_->size());
return;
}
if (inlier_fraction_ < 0.0f || inlier_fraction_ > 1.0f) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR("Illegal inlier fraction %f, must be in [0,1]!\n", inlier_fraction_);
return;
}
const float similarity_threshold =
correspondence_rejector_poly_->getSimilarityThreshold();
if (similarity_threshold < 0.0f || similarity_threshold >= 1.0f) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR("Illegal prerejection similarity threshold %f, must be in [0,1[!\n",
similarity_threshold);
return;
}
if (k_correspondences_ <= 0) {
PCL_ERROR("[pcl::%s::computeTransformation] ", getClassName().c_str());
PCL_ERROR("Illegal correspondence randomness %d, must be > 0!\n",
k_correspondences_);
return;
}
// Initialize prerejector (similarity threshold already set to default value in
// constructor)
correspondence_rejector_poly_->setInputSource(input_);
correspondence_rejector_poly_->setInputTarget(target_);
correspondence_rejector_poly_->setCardinality(nr_samples_);
int num_rejections = 0; // For debugging
// Initialize results
final_transformation_ = guess;
inliers_.clear();
float lowest_error = std::numeric_limits<float>::max();
converged_ = false;
// Temporaries
pcl::Indices inliers;
float inlier_fraction;
float error;
// If guess is not the Identity matrix we check it
if (!guess.isApprox(Eigen::Matrix4f::Identity(), 0.01f)) {
getFitness(inliers, error);
inlier_fraction =
static_cast<float>(inliers.size()) / static_cast<float>(input_->size());
if (inlier_fraction >= inlier_fraction_ && error < lowest_error) {
inliers_ = inliers;
lowest_error = error;
converged_ = true;
}
}
// Feature correspondence cache
std::vector<pcl::Indices> similar_features(input_->size());
// Start
for (int i = 0; i < max_iterations_; ++i) {
// Temporary containers
pcl::Indices sample_indices;
pcl::Indices corresponding_indices;
// Draw nr_samples_ random samples
selectSamples(*input_, nr_samples_, sample_indices);
// Find corresponding features in the target cloud
findSimilarFeatures(sample_indices, similar_features, corresponding_indices);
// Apply prerejection
if (!correspondence_rejector_poly_->thresholdPolygon(sample_indices,
corresponding_indices)) {
++num_rejections;
continue;
}
// Estimate the transform from the correspondences, write to transformation_
transformation_estimation_->estimateRigidTransformation(
*input_, sample_indices, *target_, corresponding_indices, transformation_);
// Take a backup of previous result
const Matrix4 final_transformation_prev = final_transformation_;
// Set final result to current transformation
final_transformation_ = transformation_;
// Transform the input and compute the error (uses input_ and final_transformation_)
getFitness(inliers, error);
// Restore previous result
final_transformation_ = final_transformation_prev;
// If the new fit is better, update results
inlier_fraction =
static_cast<float>(inliers.size()) / static_cast<float>(input_->size());
// Update result if pose hypothesis is better
if (inlier_fraction >= inlier_fraction_ && error < lowest_error) {
inliers_ = inliers;
lowest_error = error;
converged_ = true;
final_transformation_ = transformation_;
}
}
// Apply the final transformation
if (converged_)
transformPointCloud(*input_, output, final_transformation_);
// Debug output
PCL_DEBUG("[pcl::%s::computeTransformation] Rejected %i out of %i generated pose "
"hypotheses.\n",
getClassName().c_str(),
num_rejections,
max_iterations_);
}
template <typename PointSource, typename PointTarget, typename FeatureT>
void
SampleConsensusPrerejective<PointSource, PointTarget, FeatureT>::getFitness(
pcl::Indices& inliers, float& fitness_score)
{
// Initialize variables
inliers.clear();
inliers.reserve(input_->size());
fitness_score = 0.0f;
// Use squared distance for comparison with NN search results
const float max_range = corr_dist_threshold_ * corr_dist_threshold_;
// Transform the input dataset using the final transformation
PointCloudSource input_transformed;
input_transformed.resize(input_->size());
transformPointCloud(*input_, input_transformed, final_transformation_);
// For each point in the source dataset
for (std::size_t i = 0; i < input_transformed.size(); ++i) {
// Find its nearest neighbor in the target
pcl::Indices nn_indices(1);
std::vector<float> nn_dists(1);
tree_->nearestKSearch(input_transformed[i], 1, nn_indices, nn_dists);
// Check if point is an inlier
if (nn_dists[0] < max_range) {
// Update inliers
inliers.push_back(i);
// Update fitness score
fitness_score += nn_dists[0];
}
}
// Calculate MSE
if (!inliers.empty())
fitness_score /= static_cast<float>(inliers.size());
else
fitness_score = std::numeric_limits<float>::max();
}
} // namespace pcl
#endif