318 lines
13 KiB
C++
318 lines
13 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_REGISTRATION_IMPL_ICP_HPP_
|
||
|
|
#define PCL_REGISTRATION_IMPL_ICP_HPP_
|
||
|
|
|
||
|
|
#include <pcl/correspondence.h>
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar>
|
||
|
|
void
|
||
|
|
IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud(
|
||
|
|
const PointCloudSource& input, PointCloudSource& output, const Matrix4& transform)
|
||
|
|
{
|
||
|
|
Eigen::Vector4f pt(0.0f, 0.0f, 0.0f, 1.0f), pt_t;
|
||
|
|
Eigen::Matrix4f tr = transform.template cast<float>();
|
||
|
|
|
||
|
|
// XYZ is ALWAYS present due to the templatization, so we only have to check for
|
||
|
|
// normals
|
||
|
|
if (source_has_normals_) {
|
||
|
|
Eigen::Vector3f nt, nt_t;
|
||
|
|
Eigen::Matrix3f rot = tr.block<3, 3>(0, 0);
|
||
|
|
|
||
|
|
for (std::size_t i = 0; i < input.size(); ++i) {
|
||
|
|
const std::uint8_t* data_in = reinterpret_cast<const std::uint8_t*>(&input[i]);
|
||
|
|
std::uint8_t* data_out = reinterpret_cast<std::uint8_t*>(&output[i]);
|
||
|
|
memcpy(&pt[0], data_in + x_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&pt[1], data_in + y_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&pt[2], data_in + z_idx_offset_, sizeof(float));
|
||
|
|
|
||
|
|
if (!std::isfinite(pt[0]) || !std::isfinite(pt[1]) || !std::isfinite(pt[2]))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
pt_t = tr * pt;
|
||
|
|
|
||
|
|
memcpy(data_out + x_idx_offset_, &pt_t[0], sizeof(float));
|
||
|
|
memcpy(data_out + y_idx_offset_, &pt_t[1], sizeof(float));
|
||
|
|
memcpy(data_out + z_idx_offset_, &pt_t[2], sizeof(float));
|
||
|
|
|
||
|
|
memcpy(&nt[0], data_in + nx_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&nt[1], data_in + ny_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&nt[2], data_in + nz_idx_offset_, sizeof(float));
|
||
|
|
|
||
|
|
if (!std::isfinite(nt[0]) || !std::isfinite(nt[1]) || !std::isfinite(nt[2]))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
nt_t = rot * nt;
|
||
|
|
|
||
|
|
memcpy(data_out + nx_idx_offset_, &nt_t[0], sizeof(float));
|
||
|
|
memcpy(data_out + ny_idx_offset_, &nt_t[1], sizeof(float));
|
||
|
|
memcpy(data_out + nz_idx_offset_, &nt_t[2], sizeof(float));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
for (std::size_t i = 0; i < input.size(); ++i) {
|
||
|
|
const std::uint8_t* data_in = reinterpret_cast<const std::uint8_t*>(&input[i]);
|
||
|
|
std::uint8_t* data_out = reinterpret_cast<std::uint8_t*>(&output[i]);
|
||
|
|
memcpy(&pt[0], data_in + x_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&pt[1], data_in + y_idx_offset_, sizeof(float));
|
||
|
|
memcpy(&pt[2], data_in + z_idx_offset_, sizeof(float));
|
||
|
|
|
||
|
|
if (!std::isfinite(pt[0]) || !std::isfinite(pt[1]) || !std::isfinite(pt[2]))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
pt_t = tr * pt;
|
||
|
|
|
||
|
|
memcpy(data_out + x_idx_offset_, &pt_t[0], sizeof(float));
|
||
|
|
memcpy(data_out + y_idx_offset_, &pt_t[1], sizeof(float));
|
||
|
|
memcpy(data_out + z_idx_offset_, &pt_t[2], sizeof(float));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar>
|
||
|
|
void
|
||
|
|
IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation(
|
||
|
|
PointCloudSource& output, const Matrix4& guess)
|
||
|
|
{
|
||
|
|
// Point cloud containing the correspondences of each point in <input, indices>
|
||
|
|
PointCloudSourcePtr input_transformed(new PointCloudSource);
|
||
|
|
|
||
|
|
nr_iterations_ = 0;
|
||
|
|
converged_ = false;
|
||
|
|
|
||
|
|
// Initialise final transformation to the guessed one
|
||
|
|
final_transformation_ = guess;
|
||
|
|
|
||
|
|
// If the guessed transformation is non identity
|
||
|
|
if (guess != Matrix4::Identity()) {
|
||
|
|
input_transformed->resize(input_->size());
|
||
|
|
// Apply guessed transformation prior to search for neighbours
|
||
|
|
transformCloud(*input_, *input_transformed, guess);
|
||
|
|
}
|
||
|
|
else
|
||
|
|
*input_transformed = *input_;
|
||
|
|
|
||
|
|
transformation_ = Matrix4::Identity();
|
||
|
|
|
||
|
|
// Make blobs if necessary
|
||
|
|
determineRequiredBlobData();
|
||
|
|
PCLPointCloud2::Ptr target_blob(new PCLPointCloud2);
|
||
|
|
if (need_target_blob_)
|
||
|
|
pcl::toPCLPointCloud2(*target_, *target_blob);
|
||
|
|
|
||
|
|
// Pass in the default target for the Correspondence Estimation/Rejection code
|
||
|
|
correspondence_estimation_->setInputTarget(target_);
|
||
|
|
if (correspondence_estimation_->requiresTargetNormals())
|
||
|
|
correspondence_estimation_->setTargetNormals(target_blob);
|
||
|
|
// Correspondence Rejectors need a binary blob
|
||
|
|
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
|
||
|
|
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
|
||
|
|
if (rej->requiresTargetPoints())
|
||
|
|
rej->setTargetPoints(target_blob);
|
||
|
|
if (rej->requiresTargetNormals() && target_has_normals_)
|
||
|
|
rej->setTargetNormals(target_blob);
|
||
|
|
}
|
||
|
|
|
||
|
|
convergence_criteria_->setMaximumIterations(max_iterations_);
|
||
|
|
convergence_criteria_->setRelativeMSE(euclidean_fitness_epsilon_);
|
||
|
|
convergence_criteria_->setTranslationThreshold(transformation_epsilon_);
|
||
|
|
if (transformation_rotation_epsilon_ > 0)
|
||
|
|
convergence_criteria_->setRotationThreshold(transformation_rotation_epsilon_);
|
||
|
|
else
|
||
|
|
convergence_criteria_->setRotationThreshold(1.0 - transformation_epsilon_);
|
||
|
|
|
||
|
|
// Repeat until convergence
|
||
|
|
do {
|
||
|
|
// Get blob data if needed
|
||
|
|
PCLPointCloud2::Ptr input_transformed_blob;
|
||
|
|
if (need_source_blob_) {
|
||
|
|
input_transformed_blob.reset(new PCLPointCloud2);
|
||
|
|
toPCLPointCloud2(*input_transformed, *input_transformed_blob);
|
||
|
|
}
|
||
|
|
// Save the previously estimated transformation
|
||
|
|
previous_transformation_ = transformation_;
|
||
|
|
|
||
|
|
// Set the source each iteration, to ensure the dirty flag is updated
|
||
|
|
correspondence_estimation_->setInputSource(input_transformed);
|
||
|
|
if (correspondence_estimation_->requiresSourceNormals())
|
||
|
|
correspondence_estimation_->setSourceNormals(input_transformed_blob);
|
||
|
|
// Estimate correspondences
|
||
|
|
if (use_reciprocal_correspondence_)
|
||
|
|
correspondence_estimation_->determineReciprocalCorrespondences(
|
||
|
|
*correspondences_, corr_dist_threshold_);
|
||
|
|
else
|
||
|
|
correspondence_estimation_->determineCorrespondences(*correspondences_,
|
||
|
|
corr_dist_threshold_);
|
||
|
|
|
||
|
|
// if (correspondence_rejectors_.empty ())
|
||
|
|
CorrespondencesPtr temp_correspondences(new Correspondences(*correspondences_));
|
||
|
|
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
|
||
|
|
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
|
||
|
|
PCL_DEBUG("Applying a correspondence rejector method: %s.\n",
|
||
|
|
rej->getClassName().c_str());
|
||
|
|
if (rej->requiresSourcePoints())
|
||
|
|
rej->setSourcePoints(input_transformed_blob);
|
||
|
|
if (rej->requiresSourceNormals() && source_has_normals_)
|
||
|
|
rej->setSourceNormals(input_transformed_blob);
|
||
|
|
rej->setInputCorrespondences(temp_correspondences);
|
||
|
|
rej->getCorrespondences(*correspondences_);
|
||
|
|
// Modify input for the next iteration
|
||
|
|
if (i < correspondence_rejectors_.size() - 1)
|
||
|
|
*temp_correspondences = *correspondences_;
|
||
|
|
}
|
||
|
|
|
||
|
|
std::size_t cnt = correspondences_->size();
|
||
|
|
// Check whether we have enough correspondences
|
||
|
|
if (static_cast<int>(cnt) < min_number_correspondences_) {
|
||
|
|
PCL_ERROR("[pcl::%s::computeTransformation] Not enough correspondences found. "
|
||
|
|
"Relax your threshold parameters.\n",
|
||
|
|
getClassName().c_str());
|
||
|
|
convergence_criteria_->setConvergenceState(
|
||
|
|
pcl::registration::DefaultConvergenceCriteria<
|
||
|
|
Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
|
||
|
|
converged_ = false;
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Estimate the transform
|
||
|
|
transformation_estimation_->estimateRigidTransformation(
|
||
|
|
*input_transformed, *target_, *correspondences_, transformation_);
|
||
|
|
|
||
|
|
// Transform the data
|
||
|
|
transformCloud(*input_transformed, *input_transformed, transformation_);
|
||
|
|
|
||
|
|
// Obtain the final transformation
|
||
|
|
final_transformation_ = transformation_ * final_transformation_;
|
||
|
|
|
||
|
|
++nr_iterations_;
|
||
|
|
|
||
|
|
// Update the vizualization of icp convergence
|
||
|
|
// if (update_visualizer_ != 0)
|
||
|
|
// update_visualizer_(output, source_indices_good, *target_, target_indices_good );
|
||
|
|
|
||
|
|
converged_ = static_cast<bool>((*convergence_criteria_));
|
||
|
|
} while (convergence_criteria_->getConvergenceState() ==
|
||
|
|
pcl::registration::DefaultConvergenceCriteria<
|
||
|
|
Scalar>::CONVERGENCE_CRITERIA_NOT_CONVERGED);
|
||
|
|
|
||
|
|
// Transform the input cloud using the final transformation
|
||
|
|
PCL_DEBUG("Transformation "
|
||
|
|
"is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%"
|
||
|
|
"5f\t%5f\t%5f\t%5f\n",
|
||
|
|
final_transformation_(0, 0),
|
||
|
|
final_transformation_(0, 1),
|
||
|
|
final_transformation_(0, 2),
|
||
|
|
final_transformation_(0, 3),
|
||
|
|
final_transformation_(1, 0),
|
||
|
|
final_transformation_(1, 1),
|
||
|
|
final_transformation_(1, 2),
|
||
|
|
final_transformation_(1, 3),
|
||
|
|
final_transformation_(2, 0),
|
||
|
|
final_transformation_(2, 1),
|
||
|
|
final_transformation_(2, 2),
|
||
|
|
final_transformation_(2, 3),
|
||
|
|
final_transformation_(3, 0),
|
||
|
|
final_transformation_(3, 1),
|
||
|
|
final_transformation_(3, 2),
|
||
|
|
final_transformation_(3, 3));
|
||
|
|
|
||
|
|
// Copy all the values
|
||
|
|
output = *input_;
|
||
|
|
// Transform the XYZ + normals
|
||
|
|
transformCloud(*input_, output, final_transformation_);
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar>
|
||
|
|
void
|
||
|
|
IterativeClosestPoint<PointSource, PointTarget, Scalar>::determineRequiredBlobData()
|
||
|
|
{
|
||
|
|
need_source_blob_ = false;
|
||
|
|
need_target_blob_ = false;
|
||
|
|
// Check estimator
|
||
|
|
need_source_blob_ |= correspondence_estimation_->requiresSourceNormals();
|
||
|
|
need_target_blob_ |= correspondence_estimation_->requiresTargetNormals();
|
||
|
|
// Add warnings if necessary
|
||
|
|
if (correspondence_estimation_->requiresSourceNormals() && !source_has_normals_) {
|
||
|
|
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects source normals, "
|
||
|
|
"but we can't provide them.\n",
|
||
|
|
getClassName().c_str());
|
||
|
|
}
|
||
|
|
if (correspondence_estimation_->requiresTargetNormals() && !target_has_normals_) {
|
||
|
|
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects target normals, "
|
||
|
|
"but we can't provide them.\n",
|
||
|
|
getClassName().c_str());
|
||
|
|
}
|
||
|
|
// Check rejectors
|
||
|
|
for (std::size_t i = 0; i < correspondence_rejectors_.size(); i++) {
|
||
|
|
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
|
||
|
|
need_source_blob_ |= rej->requiresSourcePoints();
|
||
|
|
need_source_blob_ |= rej->requiresSourceNormals();
|
||
|
|
need_target_blob_ |= rej->requiresTargetPoints();
|
||
|
|
need_target_blob_ |= rej->requiresTargetNormals();
|
||
|
|
if (rej->requiresSourceNormals() && !source_has_normals_) {
|
||
|
|
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects source "
|
||
|
|
"normals, but we can't provide them.\n",
|
||
|
|
getClassName().c_str(),
|
||
|
|
rej->getClassName().c_str());
|
||
|
|
}
|
||
|
|
if (rej->requiresTargetNormals() && !target_has_normals_) {
|
||
|
|
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects target "
|
||
|
|
"normals, but we can't provide them.\n",
|
||
|
|
getClassName().c_str(),
|
||
|
|
rej->getClassName().c_str());
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar>
|
||
|
|
void
|
||
|
|
IterativeClosestPointWithNormals<PointSource, PointTarget, Scalar>::transformCloud(
|
||
|
|
const PointCloudSource& input, PointCloudSource& output, const Matrix4& transform)
|
||
|
|
{
|
||
|
|
pcl::transformPointCloudWithNormals(input, output, transform);
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace pcl
|
||
|
|
|
||
|
|
#endif /* PCL_REGISTRATION_IMPL_ICP_HPP_ */
|