318 lines
13 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_REGISTRATION_IMPL_ICP_HPP_
#define PCL_REGISTRATION_IMPL_ICP_HPP_
#include <pcl/correspondence.h>
namespace pcl {
template <typename PointSource, typename PointTarget, typename Scalar>
void
IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud(
const PointCloudSource& input, PointCloudSource& output, const Matrix4& transform)
{
Eigen::Vector4f pt(0.0f, 0.0f, 0.0f, 1.0f), pt_t;
Eigen::Matrix4f tr = transform.template cast<float>();
// XYZ is ALWAYS present due to the templatization, so we only have to check for
// normals
if (source_has_normals_) {
Eigen::Vector3f nt, nt_t;
Eigen::Matrix3f rot = tr.block<3, 3>(0, 0);
for (std::size_t i = 0; i < input.size(); ++i) {
const std::uint8_t* data_in = reinterpret_cast<const std::uint8_t*>(&input[i]);
std::uint8_t* data_out = reinterpret_cast<std::uint8_t*>(&output[i]);
memcpy(&pt[0], data_in + x_idx_offset_, sizeof(float));
memcpy(&pt[1], data_in + y_idx_offset_, sizeof(float));
memcpy(&pt[2], data_in + z_idx_offset_, sizeof(float));
if (!std::isfinite(pt[0]) || !std::isfinite(pt[1]) || !std::isfinite(pt[2]))
continue;
pt_t = tr * pt;
memcpy(data_out + x_idx_offset_, &pt_t[0], sizeof(float));
memcpy(data_out + y_idx_offset_, &pt_t[1], sizeof(float));
memcpy(data_out + z_idx_offset_, &pt_t[2], sizeof(float));
memcpy(&nt[0], data_in + nx_idx_offset_, sizeof(float));
memcpy(&nt[1], data_in + ny_idx_offset_, sizeof(float));
memcpy(&nt[2], data_in + nz_idx_offset_, sizeof(float));
if (!std::isfinite(nt[0]) || !std::isfinite(nt[1]) || !std::isfinite(nt[2]))
continue;
nt_t = rot * nt;
memcpy(data_out + nx_idx_offset_, &nt_t[0], sizeof(float));
memcpy(data_out + ny_idx_offset_, &nt_t[1], sizeof(float));
memcpy(data_out + nz_idx_offset_, &nt_t[2], sizeof(float));
}
}
else {
for (std::size_t i = 0; i < input.size(); ++i) {
const std::uint8_t* data_in = reinterpret_cast<const std::uint8_t*>(&input[i]);
std::uint8_t* data_out = reinterpret_cast<std::uint8_t*>(&output[i]);
memcpy(&pt[0], data_in + x_idx_offset_, sizeof(float));
memcpy(&pt[1], data_in + y_idx_offset_, sizeof(float));
memcpy(&pt[2], data_in + z_idx_offset_, sizeof(float));
if (!std::isfinite(pt[0]) || !std::isfinite(pt[1]) || !std::isfinite(pt[2]))
continue;
pt_t = tr * pt;
memcpy(data_out + x_idx_offset_, &pt_t[0], sizeof(float));
memcpy(data_out + y_idx_offset_, &pt_t[1], sizeof(float));
memcpy(data_out + z_idx_offset_, &pt_t[2], sizeof(float));
}
}
}
template <typename PointSource, typename PointTarget, typename Scalar>
void
IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation(
PointCloudSource& output, const Matrix4& guess)
{
// Point cloud containing the correspondences of each point in <input, indices>
PointCloudSourcePtr input_transformed(new PointCloudSource);
nr_iterations_ = 0;
converged_ = false;
// Initialise final transformation to the guessed one
final_transformation_ = guess;
// If the guessed transformation is non identity
if (guess != Matrix4::Identity()) {
input_transformed->resize(input_->size());
// Apply guessed transformation prior to search for neighbours
transformCloud(*input_, *input_transformed, guess);
}
else
*input_transformed = *input_;
transformation_ = Matrix4::Identity();
// Make blobs if necessary
determineRequiredBlobData();
PCLPointCloud2::Ptr target_blob(new PCLPointCloud2);
if (need_target_blob_)
pcl::toPCLPointCloud2(*target_, *target_blob);
// Pass in the default target for the Correspondence Estimation/Rejection code
correspondence_estimation_->setInputTarget(target_);
if (correspondence_estimation_->requiresTargetNormals())
correspondence_estimation_->setTargetNormals(target_blob);
// Correspondence Rejectors need a binary blob
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
if (rej->requiresTargetPoints())
rej->setTargetPoints(target_blob);
if (rej->requiresTargetNormals() && target_has_normals_)
rej->setTargetNormals(target_blob);
}
convergence_criteria_->setMaximumIterations(max_iterations_);
convergence_criteria_->setRelativeMSE(euclidean_fitness_epsilon_);
convergence_criteria_->setTranslationThreshold(transformation_epsilon_);
if (transformation_rotation_epsilon_ > 0)
convergence_criteria_->setRotationThreshold(transformation_rotation_epsilon_);
else
convergence_criteria_->setRotationThreshold(1.0 - transformation_epsilon_);
// Repeat until convergence
do {
// Get blob data if needed
PCLPointCloud2::Ptr input_transformed_blob;
if (need_source_blob_) {
input_transformed_blob.reset(new PCLPointCloud2);
toPCLPointCloud2(*input_transformed, *input_transformed_blob);
}
// Save the previously estimated transformation
previous_transformation_ = transformation_;
// Set the source each iteration, to ensure the dirty flag is updated
correspondence_estimation_->setInputSource(input_transformed);
if (correspondence_estimation_->requiresSourceNormals())
correspondence_estimation_->setSourceNormals(input_transformed_blob);
// Estimate correspondences
if (use_reciprocal_correspondence_)
correspondence_estimation_->determineReciprocalCorrespondences(
*correspondences_, corr_dist_threshold_);
else
correspondence_estimation_->determineCorrespondences(*correspondences_,
corr_dist_threshold_);
// if (correspondence_rejectors_.empty ())
CorrespondencesPtr temp_correspondences(new Correspondences(*correspondences_));
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
PCL_DEBUG("Applying a correspondence rejector method: %s.\n",
rej->getClassName().c_str());
if (rej->requiresSourcePoints())
rej->setSourcePoints(input_transformed_blob);
if (rej->requiresSourceNormals() && source_has_normals_)
rej->setSourceNormals(input_transformed_blob);
rej->setInputCorrespondences(temp_correspondences);
rej->getCorrespondences(*correspondences_);
// Modify input for the next iteration
if (i < correspondence_rejectors_.size() - 1)
*temp_correspondences = *correspondences_;
}
std::size_t cnt = correspondences_->size();
// Check whether we have enough correspondences
if (static_cast<int>(cnt) < min_number_correspondences_) {
PCL_ERROR("[pcl::%s::computeTransformation] Not enough correspondences found. "
"Relax your threshold parameters.\n",
getClassName().c_str());
convergence_criteria_->setConvergenceState(
pcl::registration::DefaultConvergenceCriteria<
Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
converged_ = false;
break;
}
// Estimate the transform
transformation_estimation_->estimateRigidTransformation(
*input_transformed, *target_, *correspondences_, transformation_);
// Transform the data
transformCloud(*input_transformed, *input_transformed, transformation_);
// Obtain the final transformation
final_transformation_ = transformation_ * final_transformation_;
++nr_iterations_;
// Update the vizualization of icp convergence
// if (update_visualizer_ != 0)
// update_visualizer_(output, source_indices_good, *target_, target_indices_good );
converged_ = static_cast<bool>((*convergence_criteria_));
} while (convergence_criteria_->getConvergenceState() ==
pcl::registration::DefaultConvergenceCriteria<
Scalar>::CONVERGENCE_CRITERIA_NOT_CONVERGED);
// Transform the input cloud using the final transformation
PCL_DEBUG("Transformation "
"is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%"
"5f\t%5f\t%5f\t%5f\n",
final_transformation_(0, 0),
final_transformation_(0, 1),
final_transformation_(0, 2),
final_transformation_(0, 3),
final_transformation_(1, 0),
final_transformation_(1, 1),
final_transformation_(1, 2),
final_transformation_(1, 3),
final_transformation_(2, 0),
final_transformation_(2, 1),
final_transformation_(2, 2),
final_transformation_(2, 3),
final_transformation_(3, 0),
final_transformation_(3, 1),
final_transformation_(3, 2),
final_transformation_(3, 3));
// Copy all the values
output = *input_;
// Transform the XYZ + normals
transformCloud(*input_, output, final_transformation_);
}
template <typename PointSource, typename PointTarget, typename Scalar>
void
IterativeClosestPoint<PointSource, PointTarget, Scalar>::determineRequiredBlobData()
{
need_source_blob_ = false;
need_target_blob_ = false;
// Check estimator
need_source_blob_ |= correspondence_estimation_->requiresSourceNormals();
need_target_blob_ |= correspondence_estimation_->requiresTargetNormals();
// Add warnings if necessary
if (correspondence_estimation_->requiresSourceNormals() && !source_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects source normals, "
"but we can't provide them.\n",
getClassName().c_str());
}
if (correspondence_estimation_->requiresTargetNormals() && !target_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects target normals, "
"but we can't provide them.\n",
getClassName().c_str());
}
// Check rejectors
for (std::size_t i = 0; i < correspondence_rejectors_.size(); i++) {
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
need_source_blob_ |= rej->requiresSourcePoints();
need_source_blob_ |= rej->requiresSourceNormals();
need_target_blob_ |= rej->requiresTargetPoints();
need_target_blob_ |= rej->requiresTargetNormals();
if (rej->requiresSourceNormals() && !source_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects source "
"normals, but we can't provide them.\n",
getClassName().c_str(),
rej->getClassName().c_str());
}
if (rej->requiresTargetNormals() && !target_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects target "
"normals, but we can't provide them.\n",
getClassName().c_str(),
rej->getClassName().c_str());
}
}
}
template <typename PointSource, typename PointTarget, typename Scalar>
void
IterativeClosestPointWithNormals<PointSource, PointTarget, Scalar>::transformCloud(
const PointCloudSource& input, PointCloudSource& output, const Matrix4& transform)
{
pcl::transformPointCloudWithNormals(input, output, transform);
}
} // namespace pcl
#endif /* PCL_REGISTRATION_IMPL_ICP_HPP_ */