185 lines
7.3 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
/*
* trimmed_icp.h
*
* Created on: Mar 10, 2013
* Author: papazov
*/
#pragma once
#include <pcl/registration/transformation_estimation_svd.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/correspondence.h>
#include <pcl/point_cloud.h>
#include <pcl/pcl_exports.h>
#include <limits>
#include <pcl/recognition/ransac_based/auxiliary.h>
namespace pcl
{
namespace recognition
{
template<typename PointT, typename Scalar>
class PCL_EXPORTS TrimmedICP: public pcl::registration::TransformationEstimationSVD<PointT, PointT, Scalar>
{
public:
using PointCloud = pcl::PointCloud<PointT>;
using PointCloudConstPtr = typename PointCloud::ConstPtr;
using Matrix4 = typename Eigen::Matrix<Scalar, 4, 4>;
public:
TrimmedICP ()
: new_to_old_energy_ratio_ (0.99f)
{}
~TrimmedICP ()
{}
/** \brief Call this method before calling align().
*
* \param[in] target is target point cloud. The method builds a kd-tree based on 'target' for performing fast closest point search.
* The source point cloud will be registered to 'target' (see align() method).
* */
inline void
init (const PointCloudConstPtr& target)
{
target_points_ = target;
kdtree_.setInputCloud (target);
}
/** \brief The method performs trimmed ICP, i.e., it rigidly registers the source to the target (passed to the init() method).
*
* \param[in] source_points is the point cloud to be registered to the target.
* \param[in] num_source_points_to_use gives the number of closest source points taken into account for registration. By closest
* source points we mean the source points closest to the target. These points are computed anew at each iteration.
* \param[in,out] guess_and_result is the estimated rigid transform. IMPORTANT: this matrix is also taken as the initial guess
* for the alignment. If there is no guess, set the matrix to identity!
* */
inline void
align (const PointCloud& source_points, int num_source_points_to_use, Matrix4& guess_and_result) const
{
int num_trimmed_source_points = num_source_points_to_use, num_source_points = static_cast<int> (source_points.size ());
if ( num_trimmed_source_points >= num_source_points )
{
printf ("WARNING in 'TrimmedICP::%s()': the user-defined number of source points of interest is greater or equal to "
"the total number of source points. Trimmed ICP will work correctly but won't be very efficient. Either set "
"the number of source points to use to a lower value or use standard ICP.\n", __func__);
num_trimmed_source_points = num_source_points;
}
// These are vectors containing source to target correspondences
pcl::Correspondences full_src_to_tgt (num_source_points), trimmed_src_to_tgt (num_trimmed_source_points);
// Some variables for the closest point search
pcl::PointXYZ transformed_source_point;
pcl::Indices target_index (1);
std::vector<float> sqr_dist_to_target (1);
float old_energy, energy = std::numeric_limits<float>::max ();
// printf ("\nalign\n");
do
{
// Update the correspondences
for ( int i = 0 ; i < num_source_points ; ++i )
{
// Transform the i-th source point based on the current transform matrix
aux::transform (guess_and_result, source_points[i], transformed_source_point);
// Perform the closest point search
kdtree_.nearestKSearch (transformed_source_point, 1, target_index, sqr_dist_to_target);
// Update the i-th correspondence
full_src_to_tgt[i].index_query = i;
full_src_to_tgt[i].index_match = target_index[0];
full_src_to_tgt[i].distance = sqr_dist_to_target[0];
}
// Sort in ascending order according to the squared distance
std::sort (full_src_to_tgt.begin (), full_src_to_tgt.end (), TrimmedICP::compareCorrespondences);
old_energy = energy;
energy = 0.0f;
// Now, setup the trimmed correspondences used for the transform estimation
for ( int i = 0 ; i < num_trimmed_source_points ; ++i )
{
trimmed_src_to_tgt[i].index_query = full_src_to_tgt[i].index_query;
trimmed_src_to_tgt[i].index_match = full_src_to_tgt[i].index_match;
energy += full_src_to_tgt[i].distance;
}
this->estimateRigidTransformation (source_points, *target_points_, trimmed_src_to_tgt, guess_and_result);
// printf ("energy = %f, energy diff. = %f, ratio = %f\n", energy, old_energy - energy, energy/old_energy);
}
while ( energy/old_energy < new_to_old_energy_ratio_ ); // iterate if enough progress
// printf ("\n");
}
inline void
setNewToOldEnergyRatio (float ratio)
{
if ( ratio >= 1 )
new_to_old_energy_ratio_ = 0.99f;
else
new_to_old_energy_ratio_ = ratio;
}
protected:
static inline bool
compareCorrespondences (const pcl::Correspondence& a, const pcl::Correspondence& b)
{
return a.distance < b.distance;
}
protected:
PointCloudConstPtr target_points_;
pcl::KdTreeFLANN<PointT> kdtree_;
float new_to_old_energy_ratio_;
};
} // namespace recognition
} // namespace pcl