185 lines
7.3 KiB
C
185 lines
7.3 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2012, Willow Garage, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
/*
|
||
|
|
* trimmed_icp.h
|
||
|
|
*
|
||
|
|
* Created on: Mar 10, 2013
|
||
|
|
* Author: papazov
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/registration/transformation_estimation_svd.h>
|
||
|
|
#include <pcl/kdtree/kdtree_flann.h>
|
||
|
|
#include <pcl/correspondence.h>
|
||
|
|
#include <pcl/point_cloud.h>
|
||
|
|
#include <pcl/pcl_exports.h>
|
||
|
|
#include <limits>
|
||
|
|
#include <pcl/recognition/ransac_based/auxiliary.h>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
namespace recognition
|
||
|
|
{
|
||
|
|
template<typename PointT, typename Scalar>
|
||
|
|
class PCL_EXPORTS TrimmedICP: public pcl::registration::TransformationEstimationSVD<PointT, PointT, Scalar>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using PointCloud = pcl::PointCloud<PointT>;
|
||
|
|
using PointCloudConstPtr = typename PointCloud::ConstPtr;
|
||
|
|
|
||
|
|
using Matrix4 = typename Eigen::Matrix<Scalar, 4, 4>;
|
||
|
|
|
||
|
|
public:
|
||
|
|
TrimmedICP ()
|
||
|
|
: new_to_old_energy_ratio_ (0.99f)
|
||
|
|
{}
|
||
|
|
|
||
|
|
~TrimmedICP ()
|
||
|
|
{}
|
||
|
|
|
||
|
|
/** \brief Call this method before calling align().
|
||
|
|
*
|
||
|
|
* \param[in] target is target point cloud. The method builds a kd-tree based on 'target' for performing fast closest point search.
|
||
|
|
* The source point cloud will be registered to 'target' (see align() method).
|
||
|
|
* */
|
||
|
|
inline void
|
||
|
|
init (const PointCloudConstPtr& target)
|
||
|
|
{
|
||
|
|
target_points_ = target;
|
||
|
|
kdtree_.setInputCloud (target);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief The method performs trimmed ICP, i.e., it rigidly registers the source to the target (passed to the init() method).
|
||
|
|
*
|
||
|
|
* \param[in] source_points is the point cloud to be registered to the target.
|
||
|
|
* \param[in] num_source_points_to_use gives the number of closest source points taken into account for registration. By closest
|
||
|
|
* source points we mean the source points closest to the target. These points are computed anew at each iteration.
|
||
|
|
* \param[in,out] guess_and_result is the estimated rigid transform. IMPORTANT: this matrix is also taken as the initial guess
|
||
|
|
* for the alignment. If there is no guess, set the matrix to identity!
|
||
|
|
* */
|
||
|
|
inline void
|
||
|
|
align (const PointCloud& source_points, int num_source_points_to_use, Matrix4& guess_and_result) const
|
||
|
|
{
|
||
|
|
int num_trimmed_source_points = num_source_points_to_use, num_source_points = static_cast<int> (source_points.size ());
|
||
|
|
|
||
|
|
if ( num_trimmed_source_points >= num_source_points )
|
||
|
|
{
|
||
|
|
printf ("WARNING in 'TrimmedICP::%s()': the user-defined number of source points of interest is greater or equal to "
|
||
|
|
"the total number of source points. Trimmed ICP will work correctly but won't be very efficient. Either set "
|
||
|
|
"the number of source points to use to a lower value or use standard ICP.\n", __func__);
|
||
|
|
num_trimmed_source_points = num_source_points;
|
||
|
|
}
|
||
|
|
|
||
|
|
// These are vectors containing source to target correspondences
|
||
|
|
pcl::Correspondences full_src_to_tgt (num_source_points), trimmed_src_to_tgt (num_trimmed_source_points);
|
||
|
|
|
||
|
|
// Some variables for the closest point search
|
||
|
|
pcl::PointXYZ transformed_source_point;
|
||
|
|
pcl::Indices target_index (1);
|
||
|
|
std::vector<float> sqr_dist_to_target (1);
|
||
|
|
float old_energy, energy = std::numeric_limits<float>::max ();
|
||
|
|
|
||
|
|
// printf ("\nalign\n");
|
||
|
|
|
||
|
|
do
|
||
|
|
{
|
||
|
|
// Update the correspondences
|
||
|
|
for ( int i = 0 ; i < num_source_points ; ++i )
|
||
|
|
{
|
||
|
|
// Transform the i-th source point based on the current transform matrix
|
||
|
|
aux::transform (guess_and_result, source_points[i], transformed_source_point);
|
||
|
|
|
||
|
|
// Perform the closest point search
|
||
|
|
kdtree_.nearestKSearch (transformed_source_point, 1, target_index, sqr_dist_to_target);
|
||
|
|
|
||
|
|
// Update the i-th correspondence
|
||
|
|
full_src_to_tgt[i].index_query = i;
|
||
|
|
full_src_to_tgt[i].index_match = target_index[0];
|
||
|
|
full_src_to_tgt[i].distance = sqr_dist_to_target[0];
|
||
|
|
}
|
||
|
|
|
||
|
|
// Sort in ascending order according to the squared distance
|
||
|
|
std::sort (full_src_to_tgt.begin (), full_src_to_tgt.end (), TrimmedICP::compareCorrespondences);
|
||
|
|
|
||
|
|
old_energy = energy;
|
||
|
|
energy = 0.0f;
|
||
|
|
|
||
|
|
// Now, setup the trimmed correspondences used for the transform estimation
|
||
|
|
for ( int i = 0 ; i < num_trimmed_source_points ; ++i )
|
||
|
|
{
|
||
|
|
trimmed_src_to_tgt[i].index_query = full_src_to_tgt[i].index_query;
|
||
|
|
trimmed_src_to_tgt[i].index_match = full_src_to_tgt[i].index_match;
|
||
|
|
energy += full_src_to_tgt[i].distance;
|
||
|
|
}
|
||
|
|
|
||
|
|
this->estimateRigidTransformation (source_points, *target_points_, trimmed_src_to_tgt, guess_and_result);
|
||
|
|
|
||
|
|
// printf ("energy = %f, energy diff. = %f, ratio = %f\n", energy, old_energy - energy, energy/old_energy);
|
||
|
|
}
|
||
|
|
while ( energy/old_energy < new_to_old_energy_ratio_ ); // iterate if enough progress
|
||
|
|
|
||
|
|
// printf ("\n");
|
||
|
|
}
|
||
|
|
|
||
|
|
inline void
|
||
|
|
setNewToOldEnergyRatio (float ratio)
|
||
|
|
{
|
||
|
|
if ( ratio >= 1 )
|
||
|
|
new_to_old_energy_ratio_ = 0.99f;
|
||
|
|
else
|
||
|
|
new_to_old_energy_ratio_ = ratio;
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
static inline bool
|
||
|
|
compareCorrespondences (const pcl::Correspondence& a, const pcl::Correspondence& b)
|
||
|
|
{
|
||
|
|
return a.distance < b.distance;
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
PointCloudConstPtr target_points_;
|
||
|
|
pcl::KdTreeFLANN<PointT> kdtree_;
|
||
|
|
float new_to_old_energy_ratio_;
|
||
|
|
};
|
||
|
|
} // namespace recognition
|
||
|
|
} // namespace pcl
|