165 lines
4.7 KiB
C
165 lines
4.7 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* Author : Christian Potthast
|
||
|
|
* Email : potthast@usc.edu
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/ml/pairwise_potential.h>
|
||
|
|
#include <pcl/memory.h>
|
||
|
|
#include <pcl/pcl_macros.h>
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
|
||
|
|
class PCL_EXPORTS DenseCrf {
|
||
|
|
public:
|
||
|
|
/** Constructor for DenseCrf class. */
|
||
|
|
DenseCrf(int N, int m);
|
||
|
|
|
||
|
|
/** Deconstructor for DenseCrf class. */
|
||
|
|
~DenseCrf();
|
||
|
|
|
||
|
|
/** Set the input data vector.
|
||
|
|
*
|
||
|
|
* The input data vector holds the measurements coordinates as ijk of the voxel grid.
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
setDataVector(const std::vector<Eigen::Vector3i,
|
||
|
|
Eigen::aligned_allocator<Eigen::Vector3i>> data);
|
||
|
|
|
||
|
|
/** The associated color of the data. */
|
||
|
|
void
|
||
|
|
setColorVector(const std::vector<Eigen::Vector3i,
|
||
|
|
Eigen::aligned_allocator<Eigen::Vector3i>> color);
|
||
|
|
|
||
|
|
void
|
||
|
|
setUnaryEnergy(const std::vector<float> unary);
|
||
|
|
|
||
|
|
void
|
||
|
|
addPairwiseEnergy(const std::vector<float>& feature,
|
||
|
|
const int feature_dimension,
|
||
|
|
const float w);
|
||
|
|
|
||
|
|
/** Add a pairwise gaussian kernel. */
|
||
|
|
void
|
||
|
|
addPairwiseGaussian(float sx, float sy, float sz, float w);
|
||
|
|
|
||
|
|
/** Add a bilateral gaussian kernel. */
|
||
|
|
void
|
||
|
|
addPairwiseBilateral(
|
||
|
|
float sx, float sy, float sz, float sr, float sg, float sb, float w);
|
||
|
|
|
||
|
|
void
|
||
|
|
addPairwiseNormals(
|
||
|
|
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>>& coord,
|
||
|
|
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f>>& normals,
|
||
|
|
float sx,
|
||
|
|
float sy,
|
||
|
|
float sz,
|
||
|
|
float snx,
|
||
|
|
float sny,
|
||
|
|
float snz,
|
||
|
|
float w);
|
||
|
|
|
||
|
|
void
|
||
|
|
inference(int n_iterations, std::vector<float>& result, float relax = 1.0f);
|
||
|
|
|
||
|
|
void
|
||
|
|
mapInference(int n_iterations, std::vector<int>& result, float relax = 1.0f);
|
||
|
|
|
||
|
|
void
|
||
|
|
expAndNormalize(std::vector<float>& out,
|
||
|
|
const std::vector<float>& in,
|
||
|
|
float scale,
|
||
|
|
float relax = 1.0f) const;
|
||
|
|
|
||
|
|
void
|
||
|
|
expAndNormalizeORI(float* out,
|
||
|
|
const float* in,
|
||
|
|
float scale = 1.0f,
|
||
|
|
float relax = 1.0f);
|
||
|
|
void
|
||
|
|
map(int n_iterations, std::vector<int> result, float relax = 1.0f);
|
||
|
|
|
||
|
|
std::vector<float>
|
||
|
|
runInference(int n_iterations, float relax);
|
||
|
|
|
||
|
|
void
|
||
|
|
startInference();
|
||
|
|
|
||
|
|
void
|
||
|
|
stepInference(float relax);
|
||
|
|
|
||
|
|
void
|
||
|
|
runInference(float relax);
|
||
|
|
|
||
|
|
void
|
||
|
|
getBarycentric(int idx, std::vector<float>& bary);
|
||
|
|
|
||
|
|
void
|
||
|
|
getFeatures(int idx, std::vector<float>& features);
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** Number of variables and labels */
|
||
|
|
int N_, M_;
|
||
|
|
|
||
|
|
/** Data vector */
|
||
|
|
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>> data_;
|
||
|
|
|
||
|
|
/** Color vector */
|
||
|
|
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>> color_;
|
||
|
|
|
||
|
|
/** CRF unary potentials */
|
||
|
|
/** TODO: double might use to much memory */
|
||
|
|
std::vector<float> unary_;
|
||
|
|
|
||
|
|
std::vector<float> current_;
|
||
|
|
std::vector<float> next_;
|
||
|
|
std::vector<float> tmp_;
|
||
|
|
|
||
|
|
/** Pairwise potentials */
|
||
|
|
std::vector<PairwisePotential*> pairwise_potential_;
|
||
|
|
|
||
|
|
/** Input types */
|
||
|
|
bool xyz_, rgb_, normal_;
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace pcl
|