407 lines
16 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: cvfh.h 4936 2012-03-07 11:12:45Z aaldoma $
*
*/
#pragma once
#include <pcl/features/feature.h>
namespace pcl
{
/** \brief OURCVFHEstimation estimates the Oriented, Unique and Repetable Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given
* point cloud dataset given XYZ data and normals, as presented in:
* - OUR-CVFH Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation
* A. Aldoma, F. Tombari, R.B. Rusu and M. Vincze
* DAGM-OAGM 2012
* Graz, Austria
* The suggested PointOutT is pcl::VFHSignature308.
*
* \author Aitor Aldoma
* \ingroup features
*/
template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
class OURCVFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
{
public:
using Ptr = shared_ptr<OURCVFHEstimation<PointInT, PointNT, PointOutT> >;
using ConstPtr = shared_ptr<const OURCVFHEstimation<PointInT, PointNT, PointOutT> >;
using Feature<PointInT, PointOutT>::feature_name_;
using Feature<PointInT, PointOutT>::getClassName;
using Feature<PointInT, PointOutT>::indices_;
using Feature<PointInT, PointOutT>::k_;
using Feature<PointInT, PointOutT>::search_radius_;
using Feature<PointInT, PointOutT>::surface_;
using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
using KdTreePtr = typename pcl::search::Search<PointNormal>::Ptr;
using PointInTPtr = typename pcl::PointCloud<PointInT>::Ptr;
/** \brief Empty constructor. */
OURCVFHEstimation () :
vpx_ (0), vpy_ (0), vpz_ (0), leaf_size_ (0.005f), normalize_bins_ (false), curv_threshold_ (0.03f), cluster_tolerance_ (leaf_size_ * 3),
eps_angle_threshold_ (0.125f), min_points_ (50), radius_normals_ (leaf_size_ * 3)
{
search_radius_ = 0;
k_ = 1;
feature_name_ = "OURCVFHEstimation";
refine_clusters_ = 1.f;
min_axis_value_ = 0.925f;
axis_ratio_ = 0.8f;
}
;
/** \brief Creates an affine transformation from the RF axes
* \param[in] evx the x-axis
* \param[in] evy the y-axis
* \param[in] evz the z-axis
* \param[out] transformPC the resulting transformation
* \param[in] center_mat 4x4 matrix concatenated to the resulting transformation
*/
inline Eigen::Matrix4f
createTransFromAxes (Eigen::Vector3f & evx, Eigen::Vector3f & evy, Eigen::Vector3f & evz, Eigen::Affine3f & transformPC,
Eigen::Matrix4f & center_mat)
{
Eigen::Matrix4f trans;
trans.setIdentity (4, 4);
trans (0, 0) = evx (0, 0);
trans (1, 0) = evx (1, 0);
trans (2, 0) = evx (2, 0);
trans (0, 1) = evy (0, 0);
trans (1, 1) = evy (1, 0);
trans (2, 1) = evy (2, 0);
trans (0, 2) = evz (0, 0);
trans (1, 2) = evz (1, 0);
trans (2, 2) = evz (2, 0);
Eigen::Matrix4f homMatrix = Eigen::Matrix4f ();
homMatrix.setIdentity (4, 4);
homMatrix = transformPC.matrix ();
Eigen::Matrix4f trans_copy = trans.inverse ();
trans = trans_copy * center_mat * homMatrix;
return trans;
}
/** \brief Computes SGURF and the shape distribution based on the selected SGURF
* \param[in] processed the input cloud
* \param[out] output the resulting signature
* \param[in] cluster_indices the indices of the stable cluster
*/
void
computeRFAndShapeDistribution (PointInTPtr & processed, PointCloudOut &output, std::vector<pcl::PointIndices> & cluster_indices);
/** \brief Computes SGURF
* \param[in] centroid the centroid of the cluster
* \param[in] normal_centroid the average of the normals
* \param[in] processed the input cloud
* \param[out] transformations the transformations aligning the cloud to the SGURF axes
* \param[out] grid the cloud transformed internally
* \param[in] indices the indices of the stable cluster
*/
bool
sgurf (Eigen::Vector3f & centroid, Eigen::Vector3f & normal_centroid, PointInTPtr & processed, std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > & transformations,
PointInTPtr & grid, pcl::PointIndices & indices);
/** \brief Removes normals with high curvature caused by real edges or noisy data
* \param[in] cloud pointcloud to be filtered
* \param[in] indices_to_use
* \param[out] indices_out the indices of the points with higher curvature than threshold
* \param[out] indices_in the indices of the remaining points after filtering
* \param[in] threshold threshold value for curvature
*/
void
filterNormalsWithHighCurvature (const pcl::PointCloud<PointNT> & cloud, pcl::Indices & indices_to_use, pcl::Indices &indices_out,
pcl::Indices &indices_in, float threshold);
/** \brief Set the viewpoint.
* \param[in] vpx the X coordinate of the viewpoint
* \param[in] vpy the Y coordinate of the viewpoint
* \param[in] vpz the Z coordinate of the viewpoint
*/
inline void
setViewPoint (float vpx, float vpy, float vpz)
{
vpx_ = vpx;
vpy_ = vpy;
vpz_ = vpz;
}
/** \brief Set the radius used to compute normals
* \param[in] radius_normals the radius
*/
inline void
setRadiusNormals (float radius_normals)
{
radius_normals_ = radius_normals;
}
/** \brief Get the viewpoint.
* \param[out] vpx the X coordinate of the viewpoint
* \param[out] vpy the Y coordinate of the viewpoint
* \param[out] vpz the Z coordinate of the viewpoint
*/
inline void
getViewPoint (float &vpx, float &vpy, float &vpz)
{
vpx = vpx_;
vpy = vpy_;
vpz = vpz_;
}
/** \brief Get the centroids used to compute different CVFH descriptors
* \param[out] centroids vector to hold the centroids
*/
inline void
getCentroidClusters (std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > & centroids)
{
for (std::size_t i = 0; i < centroids_dominant_orientations_.size (); ++i)
centroids.push_back (centroids_dominant_orientations_[i]);
}
/** \brief Get the normal centroids used to compute different CVFH descriptors
* \param[out] centroids vector to hold the normal centroids
*/
inline void
getCentroidNormalClusters (std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > & centroids)
{
for (std::size_t i = 0; i < dominant_normals_.size (); ++i)
centroids.push_back (dominant_normals_[i]);
}
/** \brief Sets max. Euclidean distance between points to be added to the cluster
* \param[in] d the maximum Euclidean distance
*/
inline void
setClusterTolerance (float d)
{
cluster_tolerance_ = d;
}
/** \brief Sets max. deviation of the normals between two points so they can be clustered together
* \param[in] d the maximum deviation
*/
inline void
setEPSAngleThreshold (float d)
{
eps_angle_threshold_ = d;
}
/** \brief Sets curvature threshold for removing normals
* \param[in] d the curvature threshold
*/
inline void
setCurvatureThreshold (float d)
{
curv_threshold_ = d;
}
/** \brief Set minimum amount of points for a cluster to be considered
* \param[in] min the minimum amount of points to be set
*/
inline void
setMinPoints (std::size_t min)
{
min_points_ = min;
}
/** \brief Sets whether the signatures should be normalized or not
* \param[in] normalize true if normalization is required, false otherwise
*/
inline void
setNormalizeBins (bool normalize)
{
normalize_bins_ = normalize;
}
/** \brief Gets the indices of the original point cloud used to compute the signatures
* \param[out] indices vector of point indices
*/
inline void
getClusterIndices (std::vector<pcl::PointIndices> & indices)
{
indices = clusters_;
}
/** \brief Gets the number of non-disambiguable axes that correspond to each centroid
* \param[out] cluster_axes vector mapping each centroid to the number of signatures
*/
inline void
getClusterAxes (std::vector<short> & cluster_axes)
{
cluster_axes = cluster_axes_;
}
/** \brief Sets the refinement factor for the clusters
* \param[in] rc the factor used to decide if a point is used to estimate a stable cluster
*/
void
setRefineClusters (float rc)
{
refine_clusters_ = rc;
}
/** \brief Returns the transformations aligning the point cloud to the corresponding SGURF
* \param[out] trans vector of transformations
*/
void
getTransforms (std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > & trans)
{
trans = transforms_;
}
/** \brief Returns a boolean vector indicating of the transformation obtained by getTransforms() represents
* a valid SGURF
* \param[out] valid vector of booleans
*/
void
getValidTransformsVec (std::vector<bool> & valid)
{
valid = valid_transforms_;
}
/** \brief Sets the min axis ratio between the SGURF axes to decide if disambiguition is feasible
* \param[in] f the ratio between axes
*/
void
setAxisRatio (float f)
{
axis_ratio_ = f;
}
/** \brief Sets the min disambiguition axis value to generate several SGURFs for the cluster when disambiguition is difficult
* \param[in] f the min axis value
*/
void
setMinAxisValue (float f)
{
min_axis_value_ = f;
}
/** \brief Overloaded computed method from pcl::Feature.
* \param[out] output the resultant point cloud model dataset containing the estimated features
*/
void
compute (PointCloudOut &output);
private:
/** \brief Values describing the viewpoint ("pinhole" camera model assumed).
* By default, the viewpoint is set to 0,0,0.
*/
float vpx_, vpy_, vpz_;
/** \brief Size of the voxels after voxel gridding. IMPORTANT: Must match the voxel
* size of the training data or the normalize_bins_ flag must be set to true.
*/
float leaf_size_;
/** \brief Whether to normalize the signatures or not. Default: false. */
bool normalize_bins_;
/** \brief Curvature threshold for removing normals. */
float curv_threshold_;
/** \brief allowed Euclidean distance between points to be added to the cluster. */
float cluster_tolerance_;
/** \brief deviation of the normals between two points so they can be clustered together. */
float eps_angle_threshold_;
/** \brief Minimum amount of points in a clustered region to be considered stable for CVFH
* computation.
*/
std::size_t min_points_;
/** \brief Radius for the normals computation. */
float radius_normals_;
/** \brief Factor for the cluster refinement */
float refine_clusters_;
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > transforms_;
std::vector<bool> valid_transforms_;
float axis_ratio_;
float min_axis_value_;
/** \brief Estimate the OUR-CVFH descriptors at
* a set of points given by <setInputCloud (), setIndices ()> using the surface in
* setSearchSurface ()
*
* \param[out] output the resultant point cloud model dataset that contains the OUR-CVFH
* feature estimates
*/
void
computeFeature (PointCloudOut &output) override;
/** \brief Region growing method using Euclidean distances and neighbors normals to
* add points to a region.
* \param[in] cloud point cloud to split into regions
* \param[in] normals are the normals of cloud
* \param[in] tolerance is the allowed Euclidean distance between points to be added to
* the cluster
* \param[in] tree is the spatial search structure for nearest neighbour search
* \param[out] clusters vector of indices representing the clustered regions
* \param[in] eps_angle deviation of the normals between two points so they can be
* clustered together
* \param[in] min_pts_per_cluster minimum cluster size. (default: 1 point)
* \param[in] max_pts_per_cluster maximum cluster size. (default: all the points)
*/
void
extractEuclideanClustersSmooth (const pcl::PointCloud<pcl::PointNormal> &cloud, const pcl::PointCloud<pcl::PointNormal> &normals,
float tolerance, const pcl::search::Search<pcl::PointNormal>::Ptr &tree,
std::vector<pcl::PointIndices> &clusters, double eps_angle, unsigned int min_pts_per_cluster = 1,
unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
protected:
/** \brief Centroids that were used to compute different OUR-CVFH descriptors */
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > centroids_dominant_orientations_;
/** \brief Normal centroids that were used to compute different OUR-CVFH descriptors */
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > dominant_normals_;
/** \brief Indices to the points representing the stable clusters */
std::vector<pcl::PointIndices> clusters_;
/** \brief Mapping from clusters to OUR-CVFH descriptors */
std::vector<short> cluster_axes_;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/features/impl/our_cvfh.hpp>
#endif