425 lines
17 KiB
C
425 lines
17 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/memory.h>
|
||
|
|
#include <pcl/pcl_macros.h>
|
||
|
|
#include <pcl/features/feature.h>
|
||
|
|
#include <pcl/common/centroid.h>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
/** \brief Compute the Least-Squares plane fit for a given set of points, and return the estimated plane
|
||
|
|
* parameters together with the surface curvature.
|
||
|
|
* \param cloud the input point cloud
|
||
|
|
* \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointT> inline bool
|
||
|
|
computePointNormal (const pcl::PointCloud<PointT> &cloud,
|
||
|
|
Eigen::Vector4f &plane_parameters, float &curvature)
|
||
|
|
{
|
||
|
|
// Placeholder for the 3x3 covariance matrix at each surface patch
|
||
|
|
EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
|
||
|
|
// 16-bytes aligned placeholder for the XYZ centroid of a surface patch
|
||
|
|
Eigen::Vector4f xyz_centroid;
|
||
|
|
|
||
|
|
if (cloud.size () < 3 ||
|
||
|
|
computeMeanAndCovarianceMatrix (cloud, covariance_matrix, xyz_centroid) == 0)
|
||
|
|
{
|
||
|
|
plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
|
||
|
|
curvature = std::numeric_limits<float>::quiet_NaN ();
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Get the plane normal and surface curvature
|
||
|
|
solvePlaneParameters (covariance_matrix, xyz_centroid, plane_parameters, curvature);
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
|
||
|
|
* and return the estimated plane parameters together with the surface curvature.
|
||
|
|
* \param cloud the input point cloud
|
||
|
|
* \param indices the point cloud indices that need to be used
|
||
|
|
* \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointT> inline bool
|
||
|
|
computePointNormal (const pcl::PointCloud<PointT> &cloud, const pcl::Indices &indices,
|
||
|
|
Eigen::Vector4f &plane_parameters, float &curvature)
|
||
|
|
{
|
||
|
|
// Placeholder for the 3x3 covariance matrix at each surface patch
|
||
|
|
EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
|
||
|
|
// 16-bytes aligned placeholder for the XYZ centroid of a surface patch
|
||
|
|
Eigen::Vector4f xyz_centroid;
|
||
|
|
if (indices.size () < 3 ||
|
||
|
|
computeMeanAndCovarianceMatrix (cloud, indices, covariance_matrix, xyz_centroid) == 0)
|
||
|
|
{
|
||
|
|
plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
|
||
|
|
curvature = std::numeric_limits<float>::quiet_NaN ();
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
// Get the plane normal and surface curvature
|
||
|
|
solvePlaneParameters (covariance_matrix, xyz_centroid, plane_parameters, curvature);
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
|
||
|
|
* \param point a given point
|
||
|
|
* \param vp_x the X coordinate of the viewpoint
|
||
|
|
* \param vp_y the X coordinate of the viewpoint
|
||
|
|
* \param vp_z the X coordinate of the viewpoint
|
||
|
|
* \param normal the plane normal to be flipped
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointT, typename Scalar> inline void
|
||
|
|
flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
|
||
|
|
Eigen::Matrix<Scalar, 4, 1>& normal)
|
||
|
|
{
|
||
|
|
Eigen::Matrix <Scalar, 4, 1> vp (vp_x - point.x, vp_y - point.y, vp_z - point.z, 0);
|
||
|
|
|
||
|
|
// Dot product between the (viewpoint - point) and the plane normal
|
||
|
|
float cos_theta = vp.dot (normal);
|
||
|
|
|
||
|
|
// Flip the plane normal
|
||
|
|
if (cos_theta < 0)
|
||
|
|
{
|
||
|
|
normal *= -1;
|
||
|
|
normal[3] = 0.0f;
|
||
|
|
// Hessian form (D = nc . p_plane (centroid here) + p)
|
||
|
|
normal[3] = -1 * normal.dot (point.getVector4fMap ());
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
|
||
|
|
* \param point a given point
|
||
|
|
* \param vp_x the X coordinate of the viewpoint
|
||
|
|
* \param vp_y the X coordinate of the viewpoint
|
||
|
|
* \param vp_z the X coordinate of the viewpoint
|
||
|
|
* \param normal the plane normal to be flipped
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointT, typename Scalar> inline void
|
||
|
|
flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
|
||
|
|
Eigen::Matrix<Scalar, 3, 1>& normal)
|
||
|
|
{
|
||
|
|
Eigen::Matrix <Scalar, 3, 1> vp (vp_x - point.x, vp_y - point.y, vp_z - point.z);
|
||
|
|
|
||
|
|
// Flip the plane normal
|
||
|
|
if (vp.dot (normal) < 0)
|
||
|
|
normal *= -1;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
|
||
|
|
* \param point a given point
|
||
|
|
* \param vp_x the X coordinate of the viewpoint
|
||
|
|
* \param vp_y the X coordinate of the viewpoint
|
||
|
|
* \param vp_z the X coordinate of the viewpoint
|
||
|
|
* \param nx the resultant X component of the plane normal
|
||
|
|
* \param ny the resultant Y component of the plane normal
|
||
|
|
* \param nz the resultant Z component of the plane normal
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointT> inline void
|
||
|
|
flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z,
|
||
|
|
float &nx, float &ny, float &nz)
|
||
|
|
{
|
||
|
|
// See if we need to flip any plane normals
|
||
|
|
vp_x -= point.x;
|
||
|
|
vp_y -= point.y;
|
||
|
|
vp_z -= point.z;
|
||
|
|
|
||
|
|
// Dot product between the (viewpoint - point) and the plane normal
|
||
|
|
float cos_theta = (vp_x * nx + vp_y * ny + vp_z * nz);
|
||
|
|
|
||
|
|
// Flip the plane normal
|
||
|
|
if (cos_theta < 0)
|
||
|
|
{
|
||
|
|
nx *= -1;
|
||
|
|
ny *= -1;
|
||
|
|
nz *= -1;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Flip (in place) normal to get the same sign of the mean of the normals specified by normal_indices.
|
||
|
|
*
|
||
|
|
* The method is described in:
|
||
|
|
* A. Petrelli, L. Di Stefano, "A repeatable and efficient canonical reference for surface matching", 3DimPVT, 2012
|
||
|
|
* A. Petrelli, L. Di Stefano, "On the repeatability of the local reference frame for partial shape matching", 13th International Conference on Computer Vision (ICCV), 2011
|
||
|
|
*
|
||
|
|
* Normals should be unit vectors. Otherwise the resulting mean would be weighted by the normal norms.
|
||
|
|
* \param[in] normal_cloud Cloud of normals used to compute the mean
|
||
|
|
* \param[in] normal_indices Indices of normals used to compute the mean
|
||
|
|
* \param[in] normal input Normal to flip. Normal is modified by the function.
|
||
|
|
* \return false if normal_indices does not contain any valid normal.
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template<typename PointNT> inline bool
|
||
|
|
flipNormalTowardsNormalsMean ( pcl::PointCloud<PointNT> const &normal_cloud,
|
||
|
|
pcl::Indices const &normal_indices,
|
||
|
|
Eigen::Vector3f &normal)
|
||
|
|
{
|
||
|
|
Eigen::Vector3f normal_mean = Eigen::Vector3f::Zero ();
|
||
|
|
|
||
|
|
for (const auto &normal_index : normal_indices)
|
||
|
|
{
|
||
|
|
const PointNT& cur_pt = normal_cloud[normal_index];
|
||
|
|
|
||
|
|
if (pcl::isFinite (cur_pt))
|
||
|
|
{
|
||
|
|
normal_mean += cur_pt.getNormalVector3fMap ();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
if (normal_mean.isZero ())
|
||
|
|
return false;
|
||
|
|
|
||
|
|
normal_mean.normalize ();
|
||
|
|
|
||
|
|
if (normal.dot (normal_mean) < 0)
|
||
|
|
{
|
||
|
|
normal = -normal;
|
||
|
|
}
|
||
|
|
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief NormalEstimation estimates local surface properties (surface normals and curvatures)at each
|
||
|
|
* 3D point. If PointOutT is specified as pcl::Normal, the normal is stored in the first 3 components (0-2),
|
||
|
|
* and the curvature is stored in component 3.
|
||
|
|
*
|
||
|
|
* \note The code is stateful as we do not expect this class to be multicore parallelized. Please look at
|
||
|
|
* \ref NormalEstimationOMP for a parallel implementation.
|
||
|
|
* \author Radu B. Rusu
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointInT, typename PointOutT>
|
||
|
|
class NormalEstimation: public Feature<PointInT, PointOutT>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using Ptr = shared_ptr<NormalEstimation<PointInT, PointOutT> >;
|
||
|
|
using ConstPtr = shared_ptr<const NormalEstimation<PointInT, PointOutT> >;
|
||
|
|
using Feature<PointInT, PointOutT>::feature_name_;
|
||
|
|
using Feature<PointInT, PointOutT>::getClassName;
|
||
|
|
using Feature<PointInT, PointOutT>::indices_;
|
||
|
|
using Feature<PointInT, PointOutT>::input_;
|
||
|
|
using Feature<PointInT, PointOutT>::surface_;
|
||
|
|
using Feature<PointInT, PointOutT>::k_;
|
||
|
|
using Feature<PointInT, PointOutT>::search_radius_;
|
||
|
|
using Feature<PointInT, PointOutT>::search_parameter_;
|
||
|
|
|
||
|
|
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
|
||
|
|
using PointCloudConstPtr = typename Feature<PointInT, PointOutT>::PointCloudConstPtr;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
NormalEstimation ()
|
||
|
|
: vpx_ (0)
|
||
|
|
, vpy_ (0)
|
||
|
|
, vpz_ (0)
|
||
|
|
, use_sensor_origin_ (true)
|
||
|
|
{
|
||
|
|
feature_name_ = "NormalEstimation";
|
||
|
|
};
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
~NormalEstimation () {}
|
||
|
|
|
||
|
|
/** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
|
||
|
|
* and return the estimated plane parameters together with the surface curvature.
|
||
|
|
* \param cloud the input point cloud
|
||
|
|
* \param indices the point cloud indices that need to be used
|
||
|
|
* \param plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
*/
|
||
|
|
inline bool
|
||
|
|
computePointNormal (const pcl::PointCloud<PointInT> &cloud, const pcl::Indices &indices,
|
||
|
|
Eigen::Vector4f &plane_parameters, float &curvature)
|
||
|
|
{
|
||
|
|
if (indices.size () < 3 ||
|
||
|
|
computeMeanAndCovarianceMatrix (cloud, indices, covariance_matrix_, xyz_centroid_) == 0)
|
||
|
|
{
|
||
|
|
plane_parameters.setConstant (std::numeric_limits<float>::quiet_NaN ());
|
||
|
|
curvature = std::numeric_limits<float>::quiet_NaN ();
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Get the plane normal and surface curvature
|
||
|
|
solvePlaneParameters (covariance_matrix_, xyz_centroid_, plane_parameters, curvature);
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Compute the Least-Squares plane fit for a given set of points, using their indices,
|
||
|
|
* and return the estimated plane parameters together with the surface curvature.
|
||
|
|
* \param cloud the input point cloud
|
||
|
|
* \param indices the point cloud indices that need to be used
|
||
|
|
* \param nx the resultant X component of the plane normal
|
||
|
|
* \param ny the resultant Y component of the plane normal
|
||
|
|
* \param nz the resultant Z component of the plane normal
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
*/
|
||
|
|
inline bool
|
||
|
|
computePointNormal (const pcl::PointCloud<PointInT> &cloud, const pcl::Indices &indices,
|
||
|
|
float &nx, float &ny, float &nz, float &curvature)
|
||
|
|
{
|
||
|
|
if (indices.size () < 3 ||
|
||
|
|
computeMeanAndCovarianceMatrix (cloud, indices, covariance_matrix_, xyz_centroid_) == 0)
|
||
|
|
{
|
||
|
|
nx = ny = nz = curvature = std::numeric_limits<float>::quiet_NaN ();
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Get the plane normal and surface curvature
|
||
|
|
solvePlaneParameters (covariance_matrix_, nx, ny, nz, curvature);
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input dataset
|
||
|
|
* \param cloud the const boost shared pointer to a PointCloud message
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setInputCloud (const PointCloudConstPtr &cloud) override
|
||
|
|
{
|
||
|
|
input_ = cloud;
|
||
|
|
if (use_sensor_origin_)
|
||
|
|
{
|
||
|
|
vpx_ = input_->sensor_origin_.coeff (0);
|
||
|
|
vpy_ = input_->sensor_origin_.coeff (1);
|
||
|
|
vpz_ = input_->sensor_origin_.coeff (2);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the viewpoint.
|
||
|
|
* \param vpx the X coordinate of the viewpoint
|
||
|
|
* \param vpy the Y coordinate of the viewpoint
|
||
|
|
* \param vpz the Z coordinate of the viewpoint
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setViewPoint (float vpx, float vpy, float vpz)
|
||
|
|
{
|
||
|
|
vpx_ = vpx;
|
||
|
|
vpy_ = vpy;
|
||
|
|
vpz_ = vpz;
|
||
|
|
use_sensor_origin_ = false;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the viewpoint.
|
||
|
|
* \param [out] vpx x-coordinate of the view point
|
||
|
|
* \param [out] vpy y-coordinate of the view point
|
||
|
|
* \param [out] vpz z-coordinate of the view point
|
||
|
|
* \note this method returns the currently used viewpoint for normal flipping.
|
||
|
|
* If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
|
||
|
|
* If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
getViewPoint (float &vpx, float &vpy, float &vpz)
|
||
|
|
{
|
||
|
|
vpx = vpx_;
|
||
|
|
vpy = vpy_;
|
||
|
|
vpz = vpz_;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the
|
||
|
|
* normal estimation method uses the sensor origin of the input cloud.
|
||
|
|
* to use a user defined view point, use the method setViewPoint
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
useSensorOriginAsViewPoint ()
|
||
|
|
{
|
||
|
|
use_sensor_origin_ = true;
|
||
|
|
if (input_)
|
||
|
|
{
|
||
|
|
vpx_ = input_->sensor_origin_.coeff (0);
|
||
|
|
vpy_ = input_->sensor_origin_.coeff (1);
|
||
|
|
vpz_ = input_->sensor_origin_.coeff (2);
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
vpx_ = 0;
|
||
|
|
vpy_ = 0;
|
||
|
|
vpz_ = 0;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief Estimate normals for all points given in <setInputCloud (), setIndices ()> using the surface in
|
||
|
|
* setSearchSurface () and the spatial locator in setSearchMethod ()
|
||
|
|
* \note In situations where not enough neighbors are found, the normal and curvature values are set to NaN.
|
||
|
|
* \param output the resultant point cloud model dataset that contains surface normals and curvatures
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
computeFeature (PointCloudOut &output) override;
|
||
|
|
|
||
|
|
/** \brief Values describing the viewpoint ("pinhole" camera model assumed). For per point viewpoints, inherit
|
||
|
|
* from NormalEstimation and provide your own computeFeature (). By default, the viewpoint is set to 0,0,0. */
|
||
|
|
float vpx_, vpy_, vpz_;
|
||
|
|
|
||
|
|
/** \brief Placeholder for the 3x3 covariance matrix at each surface patch. */
|
||
|
|
EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix_;
|
||
|
|
|
||
|
|
/** \brief 16-bytes aligned placeholder for the XYZ centroid of a surface patch. */
|
||
|
|
Eigen::Vector4f xyz_centroid_;
|
||
|
|
|
||
|
|
/** whether the sensor origin of the input cloud or a user given viewpoint should be used.*/
|
||
|
|
bool use_sensor_origin_;
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/features/impl/normal_3d.hpp>
|
||
|
|
#endif
|