254 lines
9.5 KiB
C++
254 lines
9.5 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_FEATURES_IMPL_VFH_H_
|
||
|
|
#define PCL_FEATURES_IMPL_VFH_H_
|
||
|
|
|
||
|
|
#include <pcl/features/vfh.h>
|
||
|
|
#include <pcl/features/pfh_tools.h>
|
||
|
|
#include <pcl/common/common.h>
|
||
|
|
#include <pcl/common/centroid.h>
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template<typename PointInT, typename PointNT, typename PointOutT> bool
|
||
|
|
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::initCompute ()
|
||
|
|
{
|
||
|
|
if (input_->size () < 2 || (surface_ && surface_->size () < 2))
|
||
|
|
{
|
||
|
|
PCL_ERROR ("[pcl::VFHEstimation::initCompute] Input dataset must have at least 2 points!\n");
|
||
|
|
return (false);
|
||
|
|
}
|
||
|
|
if (search_radius_ == 0 && k_ == 0)
|
||
|
|
k_ = 1;
|
||
|
|
return (Feature<PointInT, PointOutT>::initCompute ());
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template<typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::compute (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
if (!initCompute ())
|
||
|
|
{
|
||
|
|
output.width = output.height = 0;
|
||
|
|
output.clear ();
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
// Copy the header
|
||
|
|
output.header = input_->header;
|
||
|
|
|
||
|
|
// Resize the output dataset
|
||
|
|
// Important! We should only allocate precisely how many elements we will need, otherwise
|
||
|
|
// we risk at pre-allocating too much memory which could lead to bad_alloc
|
||
|
|
// (see http://dev.pointclouds.org/issues/657)
|
||
|
|
output.width = output.height = 1;
|
||
|
|
output.is_dense = input_->is_dense;
|
||
|
|
output.resize (1);
|
||
|
|
|
||
|
|
// Perform the actual feature computation
|
||
|
|
computeFeature (output);
|
||
|
|
|
||
|
|
Feature<PointInT, PointOutT>::deinitCompute ();
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template<typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::computePointSPFHSignature (const Eigen::Vector4f ¢roid_p,
|
||
|
|
const Eigen::Vector4f ¢roid_n,
|
||
|
|
const pcl::PointCloud<PointInT> &cloud,
|
||
|
|
const pcl::PointCloud<PointNT> &normals,
|
||
|
|
const pcl::Indices &indices)
|
||
|
|
{
|
||
|
|
Eigen::Vector4f pfh_tuple;
|
||
|
|
// Reset the whole thing
|
||
|
|
for (int i = 0; i < 4; ++i)
|
||
|
|
{
|
||
|
|
hist_f_[i].setZero (nr_bins_f_[i]);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Get the bounding box of the current cluster
|
||
|
|
//Eigen::Vector4f min_pt, max_pt;
|
||
|
|
//pcl::getMinMax3D (cloud, indices, min_pt, max_pt);
|
||
|
|
//double distance_normalization_factor = (std::max)((centroid_p - min_pt).norm (), (centroid_p - max_pt).norm ());
|
||
|
|
|
||
|
|
//Instead of using the bounding box to normalize the VFH distance component, it is better to use the max_distance
|
||
|
|
//from any point to centroid. VFH is invariant to rotation about the roll axis but the bounding box is not,
|
||
|
|
//resulting in different normalization factors for point clouds that are just rotated about that axis.
|
||
|
|
|
||
|
|
double distance_normalization_factor = 1.0;
|
||
|
|
if (normalize_distances_)
|
||
|
|
{
|
||
|
|
Eigen::Vector4f max_pt;
|
||
|
|
pcl::getMaxDistance (cloud, indices, centroid_p, max_pt);
|
||
|
|
max_pt[3] = 0;
|
||
|
|
distance_normalization_factor = (centroid_p - max_pt).norm ();
|
||
|
|
}
|
||
|
|
|
||
|
|
// Factorization constant
|
||
|
|
float hist_incr = 1;
|
||
|
|
if (normalize_bins_)
|
||
|
|
hist_incr = 100.0f / static_cast<float> (indices.size () - 1);
|
||
|
|
|
||
|
|
float hist_incr_size_component = 0;;
|
||
|
|
if (size_component_)
|
||
|
|
hist_incr_size_component = hist_incr;
|
||
|
|
|
||
|
|
// Iterate over all the points in the neighborhood
|
||
|
|
for (const auto &index : indices)
|
||
|
|
{
|
||
|
|
// Compute the pair P to NNi
|
||
|
|
if (!computePairFeatures (centroid_p, centroid_n, cloud[index].getVector4fMap (),
|
||
|
|
normals[index].getNormalVector4fMap (), pfh_tuple[0], pfh_tuple[1],
|
||
|
|
pfh_tuple[2], pfh_tuple[3]))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
// Normalize the f1, f2, f3, f4 features and push them in the histogram
|
||
|
|
for (int i = 0; i < 3; ++i)
|
||
|
|
{
|
||
|
|
const int raw_index = static_cast<int> (std::floor (nr_bins_f_[i] * ((pfh_tuple[i] + M_PI) * d_pi_)));
|
||
|
|
const int h_index = std::max(std::min(raw_index, nr_bins_f_[i] - 1), 0);
|
||
|
|
hist_f_[i] (h_index) += hist_incr;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (hist_incr_size_component)
|
||
|
|
{
|
||
|
|
int h_index;
|
||
|
|
if (normalize_distances_)
|
||
|
|
h_index = static_cast<int> (std::floor (nr_bins_f_[3] * (pfh_tuple[3] / distance_normalization_factor)));
|
||
|
|
else
|
||
|
|
h_index = static_cast<int> (pcl_round (pfh_tuple[3] * 100));
|
||
|
|
|
||
|
|
h_index = std::max (std::min (h_index, nr_bins_f_[3] - 1), 0);
|
||
|
|
hist_f_[3] (h_index) += hist_incr_size_component;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::VFHEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
// ---[ Step 1a : compute the centroid in XYZ space
|
||
|
|
Eigen::Vector4f xyz_centroid (0, 0, 0, 0);
|
||
|
|
|
||
|
|
if (use_given_centroid_)
|
||
|
|
xyz_centroid = centroid_to_use_;
|
||
|
|
else
|
||
|
|
compute3DCentroid (*surface_, *indices_, xyz_centroid); // Estimate the XYZ centroid
|
||
|
|
|
||
|
|
// ---[ Step 1b : compute the centroid in normal space
|
||
|
|
Eigen::Vector4f normal_centroid = Eigen::Vector4f::Zero ();
|
||
|
|
|
||
|
|
// If the data is dense, we don't need to check for NaN
|
||
|
|
if (use_given_normal_)
|
||
|
|
normal_centroid = normal_to_use_;
|
||
|
|
else
|
||
|
|
{
|
||
|
|
std::size_t cp = 0;
|
||
|
|
if (normals_->is_dense)
|
||
|
|
{
|
||
|
|
for (const auto& index: *indices_)
|
||
|
|
{
|
||
|
|
normal_centroid.noalias () += (*normals_)[index].getNormalVector4fMap ();
|
||
|
|
}
|
||
|
|
cp = indices_->size();
|
||
|
|
}
|
||
|
|
// NaN or Inf values could exist => check for them
|
||
|
|
else
|
||
|
|
{
|
||
|
|
for (const auto& index: *indices_)
|
||
|
|
{
|
||
|
|
if (!std::isfinite ((*normals_)[index].normal[0]) ||
|
||
|
|
!std::isfinite ((*normals_)[index].normal[1]) ||
|
||
|
|
!std::isfinite ((*normals_)[index].normal[2]))
|
||
|
|
continue;
|
||
|
|
normal_centroid.noalias () += (*normals_)[index].getNormalVector4fMap ();
|
||
|
|
cp++;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
normal_centroid /= static_cast<float> (cp);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Compute the direction of view from the viewpoint to the centroid
|
||
|
|
Eigen::Vector4f viewpoint (vpx_, vpy_, vpz_, 0);
|
||
|
|
Eigen::Vector4f d_vp_p = viewpoint - xyz_centroid;
|
||
|
|
d_vp_p.normalize ();
|
||
|
|
|
||
|
|
// Estimate the SPFH at nn_indices[0] using the entire cloud
|
||
|
|
computePointSPFHSignature (xyz_centroid, normal_centroid, *surface_, *normals_, *indices_);
|
||
|
|
|
||
|
|
// ---[ Step 2 : obtain the viewpoint component
|
||
|
|
hist_vp_.setZero (nr_bins_vp_);
|
||
|
|
|
||
|
|
float hist_incr = 1.0;
|
||
|
|
if (normalize_bins_)
|
||
|
|
hist_incr = 100.0 / static_cast<double> (indices_->size ());
|
||
|
|
|
||
|
|
for (const auto& index: *indices_)
|
||
|
|
{
|
||
|
|
Eigen::Vector4f normal ((*normals_)[index].normal[0],
|
||
|
|
(*normals_)[index].normal[1],
|
||
|
|
(*normals_)[index].normal[2], 0);
|
||
|
|
// Normalize
|
||
|
|
double alpha = (normal.dot (d_vp_p) + 1.0) * 0.5;
|
||
|
|
std::size_t fi = static_cast<std::size_t> (std::floor (alpha * hist_vp_.size ()));
|
||
|
|
fi = std::max<std::size_t> (0u, fi);
|
||
|
|
fi = std::min<std::size_t> (hist_vp_.size () - 1, fi);
|
||
|
|
// Bin into the histogram
|
||
|
|
hist_vp_ [fi] += hist_incr;
|
||
|
|
}
|
||
|
|
|
||
|
|
// We only output _1_ signature
|
||
|
|
output.resize (1);
|
||
|
|
output.width = 1;
|
||
|
|
output.height = 1;
|
||
|
|
|
||
|
|
// Estimate the FPFH at nn_indices[0] using the entire cloud and copy the resultant signature
|
||
|
|
auto outPtr = std::begin (output[0].histogram);
|
||
|
|
|
||
|
|
for (int i = 0; i < 4; ++i)
|
||
|
|
{
|
||
|
|
outPtr = std::copy_n (hist_f_[i].data (), hist_f_[i].size (), outPtr);
|
||
|
|
}
|
||
|
|
outPtr = std::copy_n (hist_vp_.data (), hist_vp_.size (), outPtr);
|
||
|
|
}
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_VFHEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::VFHEstimation<T,NT,OutT>;
|
||
|
|
|
||
|
|
#endif // PCL_FEATURES_IMPL_VFH_H_
|