thirdParty/PCL 1.12.0/include/pcl-1.12/pcl/features/impl/multiscale_feature_persistence.hpp

262 lines
11 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2011, Alexandru-Eugen Ichim
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#ifndef PCL_FEATURES_IMPL_MULTISCALE_FEATURE_PERSISTENCE_H_
#define PCL_FEATURES_IMPL_MULTISCALE_FEATURE_PERSISTENCE_H_
#include <pcl/features/multiscale_feature_persistence.h>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature>
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::MultiscaleFeaturePersistence () :
alpha_ (0),
distance_metric_ (L1),
feature_estimator_ (),
features_at_scale_ (),
feature_representation_ ()
{
feature_representation_.reset (new DefaultPointRepresentation<PointFeature>);
// No input is needed, hack around the initCompute () check from PCLBase
input_.reset (new pcl::PointCloud<PointSource> ());
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> bool
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::initCompute ()
{
if (!PCLBase<PointSource>::initCompute ())
{
PCL_ERROR ("[pcl::MultiscaleFeaturePersistence::initCompute] PCLBase::initCompute () failed - no input cloud was given.\n");
return false;
}
if (!feature_estimator_)
{
PCL_ERROR ("[pcl::MultiscaleFeaturePersistence::initCompute] No feature estimator was set\n");
return false;
}
if (scale_values_.empty ())
{
PCL_ERROR ("[pcl::MultiscaleFeaturePersistence::initCompute] No scale values were given\n");
return false;
}
mean_feature_.resize (feature_representation_->getNumberOfDimensions ());
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> void
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::computeFeaturesAtAllScales ()
{
features_at_scale_.clear ();
features_at_scale_.reserve (scale_values_.size ());
features_at_scale_vectorized_.clear ();
features_at_scale_vectorized_.reserve (scale_values_.size ());
for (std::size_t scale_i = 0; scale_i < scale_values_.size (); ++scale_i)
{
FeatureCloudPtr feature_cloud (new FeatureCloud ());
computeFeatureAtScale (scale_values_[scale_i], feature_cloud);
features_at_scale_[scale_i] = feature_cloud;
// Vectorize each feature and insert it into the vectorized feature storage
std::vector<std::vector<float> > feature_cloud_vectorized;
feature_cloud_vectorized.reserve (feature_cloud->size ());
for (const auto& feature: feature_cloud->points)
{
std::vector<float> feature_vectorized (feature_representation_->getNumberOfDimensions ());
feature_representation_->vectorize (feature, feature_vectorized);
feature_cloud_vectorized.emplace_back (std::move(feature_vectorized));
}
features_at_scale_vectorized_.emplace_back (std::move(feature_cloud_vectorized));
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> void
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::computeFeatureAtScale (float &scale,
FeatureCloudPtr &features)
{
feature_estimator_->setRadiusSearch (scale);
feature_estimator_->compute (*features);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> float
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::distanceBetweenFeatures (const std::vector<float> &a,
const std::vector<float> &b)
{
return (pcl::selectNorm<std::vector<float> > (a, b, a.size (), distance_metric_));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> void
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::calculateMeanFeature ()
{
// Reset mean feature
std::fill_n(mean_feature_.begin (), mean_feature_.size (), 0.f);
std::size_t normalization_factor = 0;
for (const auto& scale: features_at_scale_vectorized_)
{
normalization_factor += scale.size (); // not using accumulate for cache efficiency
for (const auto &feature : scale)
std::transform(mean_feature_.cbegin (), mean_feature_.cend (),
feature.cbegin (), mean_feature_.begin (), std::plus<>{});
}
const float factor = std::min<float>(1, normalization_factor);
std::transform(mean_feature_.cbegin(),
mean_feature_.cend(),
mean_feature_.begin(),
[factor](const auto& mean) {
return mean / factor;
});
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> void
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::extractUniqueFeatures ()
{
unique_features_indices_.clear ();
unique_features_table_.clear ();
unique_features_indices_.reserve (scale_values_.size ());
unique_features_table_.reserve (scale_values_.size ());
for (std::size_t scale_i = 0; scale_i < features_at_scale_vectorized_.size (); ++scale_i)
{
// Calculate standard deviation within the scale
float standard_dev = 0.0;
std::vector<float> diff_vector (features_at_scale_vectorized_[scale_i].size ());
diff_vector.clear();
for (const auto& feature: features_at_scale_vectorized_[scale_i])
{
float diff = distanceBetweenFeatures (feature, mean_feature_);
standard_dev += diff * diff;
diff_vector.emplace_back (diff);
}
standard_dev = std::sqrt (standard_dev / static_cast<float> (features_at_scale_vectorized_[scale_i].size ()));
PCL_DEBUG ("[pcl::MultiscaleFeaturePersistence::extractUniqueFeatures] Standard deviation for scale %f is %f\n", scale_values_[scale_i], standard_dev);
// Select only points outside (mean +/- alpha * standard_dev)
std::list<std::size_t> indices_per_scale;
std::vector<bool> indices_table_per_scale (features_at_scale_[scale_i]->size (), false);
for (std::size_t point_i = 0; point_i < features_at_scale_[scale_i]->size (); ++point_i)
{
if (diff_vector[point_i] > alpha_ * standard_dev)
{
indices_per_scale.emplace_back (point_i);
indices_table_per_scale[point_i] = true;
}
}
unique_features_indices_.emplace_back (std::move(indices_per_scale));
unique_features_table_.emplace_back (std::move(indices_table_per_scale));
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointFeature> void
pcl::MultiscaleFeaturePersistence<PointSource, PointFeature>::determinePersistentFeatures (FeatureCloud &output_features,
pcl::IndicesPtr &output_indices)
{
if (!initCompute ())
return;
// Compute the features for all scales with the given feature estimator
PCL_DEBUG ("[pcl::MultiscaleFeaturePersistence::determinePersistentFeatures] Computing features ...\n");
computeFeaturesAtAllScales ();
// Compute mean feature
PCL_DEBUG ("[pcl::MultiscaleFeaturePersistence::determinePersistentFeatures] Calculating mean feature ...\n");
calculateMeanFeature ();
// Get the 'unique' features at each scale
PCL_DEBUG ("[pcl::MultiscaleFeaturePersistence::determinePersistentFeatures] Extracting unique features ...\n");
extractUniqueFeatures ();
PCL_DEBUG ("[pcl::MultiscaleFeaturePersistence::determinePersistentFeatures] Determining persistent features between scales ...\n");
// Determine persistent features between scales
/*
// Method 1: a feature is considered persistent if it is 'unique' in at least 2 different scales
for (std::size_t scale_i = 0; scale_i < features_at_scale_vectorized_.size () - 1; ++scale_i)
for (std::list<std::size_t>::iterator feature_it = unique_features_indices_[scale_i].begin (); feature_it != unique_features_indices_[scale_i].end (); ++feature_it)
{
if (unique_features_table_[scale_i][*feature_it] == true)
{
output_features.push_back ((*features_at_scale_[scale_i])[*feature_it]);
output_indices->push_back (feature_estimator_->getIndices ()->at (*feature_it));
}
}
*/
// Method 2: a feature is considered persistent if it is 'unique' in all the scales
for (const auto& feature: unique_features_indices_.front ())
{
bool present_in_all = true;
for (std::size_t scale_i = 0; scale_i < features_at_scale_.size (); ++scale_i)
present_in_all = present_in_all && unique_features_table_[scale_i][feature];
if (present_in_all)
{
output_features.emplace_back ((*features_at_scale_.front ())[feature]);
output_indices->emplace_back (feature_estimator_->getIndices ()->at (feature));
}
}
// Consider that output cloud is unorganized
output_features.header = feature_estimator_->getInputCloud ()->header;
output_features.is_dense = feature_estimator_->getInputCloud ()->is_dense;
output_features.width = output_features.size ();
output_features.height = 1;
}
#define PCL_INSTANTIATE_MultiscaleFeaturePersistence(InT, Feature) template class PCL_EXPORTS pcl::MultiscaleFeaturePersistence<InT, Feature>;
#endif /* PCL_FEATURES_IMPL_MULTISCALE_FEATURE_PERSISTENCE_H_ */