273 lines
10 KiB
C++
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: gfpfh.hpp 2218 2011-08-25 20:27:15Z rusu $
*
*/
#ifndef PCL_FEATURES_IMPL_GFPFH_H_
#define PCL_FEATURES_IMPL_GFPFH_H_
#include <pcl/features/gfpfh.h>
#include <pcl/octree/octree_search.h>
#include <Eigen/Core> // for Vector3f
#include <algorithm>
#include <fstream>
//////////////////////////////////////////////////////////////////////////////////////////////
template<typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::compute (PointCloudOut &output)
{
if (!Feature<PointInT, PointOutT>::initCompute ())
{
output.width = output.height = 0;
output.clear ();
return;
}
// Copy the header
output.header = input_->header;
// Resize the output dataset
// Important! We should only allocate precisely how many elements we will need, otherwise
// we risk at pre-allocating too much memory which could lead to bad_alloc
// (see http://dev.pointclouds.org/issues/657)
output.width = output.height = 1;
output.is_dense = input_->is_dense;
output.resize (1);
// Perform the actual feature computation
computeFeature (output);
Feature<PointInT, PointOutT>::deinitCompute ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
pcl::octree::OctreePointCloudSearch<PointInT> octree (octree_leaf_size_);
octree.setInputCloud (input_);
octree.addPointsFromInputCloud ();
typename pcl::PointCloud<PointInT>::VectorType occupied_cells;
octree.getOccupiedVoxelCenters (occupied_cells);
// Determine the voxels crosses along the line segments
// formed by every pair of occupied cells.
std::vector< std::vector<int> > line_histograms;
for (std::size_t i = 0; i < occupied_cells.size (); ++i)
{
Eigen::Vector3f origin = occupied_cells[i].getVector3fMap ();
for (std::size_t j = i+1; j < occupied_cells.size (); ++j)
{
typename pcl::PointCloud<PointInT>::VectorType intersected_cells;
Eigen::Vector3f end = occupied_cells[j].getVector3fMap ();
octree.getApproxIntersectedVoxelCentersBySegment (origin, end, intersected_cells, 0.5f);
// Intersected cells are ordered from closest to furthest w.r.t. the origin.
std::vector<int> histogram;
for (std::size_t k = 0; k < intersected_cells.size (); ++k)
{
pcl::Indices indices;
octree.voxelSearch (intersected_cells[k], indices);
int label = emptyLabel ();
if (!indices.empty ())
{
label = getDominantLabel (indices);
}
histogram.push_back (label);
}
line_histograms.push_back(histogram);
}
}
std::vector< std::vector<int> > transition_histograms;
computeTransitionHistograms (line_histograms, transition_histograms);
std::vector<float> distances;
computeDistancesToMean (transition_histograms, distances);
std::vector<float> gfpfh_histogram;
computeDistanceHistogram (distances, gfpfh_histogram);
output.clear ();
output.width = 1;
output.height = 1;
output.resize (1);
std::copy (gfpfh_histogram.cbegin (), gfpfh_histogram.cend (), output[0].histogram);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeTransitionHistograms (const std::vector< std::vector<int> >& label_histograms,
std::vector< std::vector<int> >& transition_histograms)
{
transition_histograms.resize (label_histograms.size ());
for (std::size_t i = 0; i < label_histograms.size (); ++i)
{
transition_histograms[i].resize ((getNumberOfClasses () + 2) * (getNumberOfClasses () + 1) / 2, 0);
std::vector< std::vector <int> > transitions (getNumberOfClasses () + 1);
for (auto &transition : transitions)
{
transition.resize (getNumberOfClasses () + 1, 0);
}
for (std::size_t k = 1; k < label_histograms[i].size (); ++k)
{
std::uint32_t first_class = label_histograms[i][k-1];
std::uint32_t second_class = label_histograms[i][k];
// Order has no influence.
if (second_class < first_class)
std::swap (first_class, second_class);
transitions[first_class][second_class] += 1;
}
// Build a one-dimension histogram out of it.
std::size_t flat_index = 0;
for (std::size_t m = 0; m < transitions.size (); ++m)
for (std::size_t n = m; n < transitions[m].size (); ++n)
{
transition_histograms[i][flat_index] = transitions[m][n];
++flat_index;
}
assert (flat_index == transition_histograms[i].size ());
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeDistancesToMean (const std::vector< std::vector<int> >& transition_histograms,
std::vector<float>& distances)
{
distances.resize (transition_histograms.size ());
std::vector<float> mean_histogram;
computeMeanHistogram (transition_histograms, mean_histogram);
for (std::size_t i = 0; i < transition_histograms.size (); ++i)
{
float d = computeHIKDistance (transition_histograms[i], mean_histogram);
distances[i] = d;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeDistanceHistogram (const std::vector<float>& distances,
std::vector<float>& histogram)
{
std::vector<float>::const_iterator min_it, max_it;
std::tie (min_it, max_it) = std::minmax_element (distances.cbegin (), distances.cend ());
assert (min_it != distances.cend ());
assert (max_it != distances.cend ());
const float min_value = *min_it;
const float max_value = *max_it;
histogram.resize (descriptorSize (), 0);
const float range = max_value - min_value;
using binSizeT = decltype(descriptorSize());
const binSizeT max_bin = descriptorSize () - 1;
for (const float &distance : distances)
{
const auto raw_bin = descriptorSize () * (distance - min_value) / range;
const auto bin = std::min<binSizeT> (max_bin, static_cast<binSizeT> (std::floor (raw_bin)));
histogram[bin] += 1;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeMeanHistogram (const std::vector< std::vector<int> >& histograms,
std::vector<float>& mean_histogram)
{
assert (histograms.size () > 0);
mean_histogram.resize (histograms[0].size (), 0);
for (const auto &histogram : histograms)
for (std::size_t j = 0; j < histogram.size (); ++j)
mean_histogram[j] += static_cast<float> (histogram[j]);
for (float &i : mean_histogram)
i /= static_cast<float> (histograms.size ());
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> float
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::computeHIKDistance (const std::vector<int>& histogram,
const std::vector<float>& mean_histogram)
{
assert (histogram.size () == mean_histogram.size ());
float norm = 0.f;
for (std::size_t i = 0; i < histogram.size (); ++i)
norm += std::min (static_cast<float> (histogram[i]), mean_histogram[i]);
norm /= static_cast<float> (histogram.size ());
return (norm);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> std::uint32_t
pcl::GFPFHEstimation<PointInT, PointNT, PointOutT>::getDominantLabel (const pcl::Indices& indices)
{
std::vector<std::uint32_t> counts (getNumberOfClasses () + 1, 0);
for (const auto &nn_index : indices)
{
std::uint32_t label = (*labels_)[nn_index].label;
counts[label] += 1;
}
const auto max_it = std::max_element (counts.cbegin (), counts.cend ());
if (max_it == counts.end ())
return (emptyLabel ());
return std::distance(counts.cbegin (), max_it);
}
#define PCL_INSTANTIATE_GFPFHEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::GFPFHEstimation<T,NT,OutT>;
#endif // PCL_FEATURES_IMPL_GFPFH_H_