174 lines
6.7 KiB
C++
174 lines
6.7 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/features/boundary.h>
|
||
|
|
#include <pcl/common/point_tests.h> // for pcl::isFinite
|
||
|
|
|
||
|
|
#include <cfloat>
|
||
|
|
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> bool
|
||
|
|
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
|
||
|
|
const pcl::PointCloud<PointInT> &cloud, int q_idx,
|
||
|
|
const pcl::Indices &indices,
|
||
|
|
const Eigen::Vector4f &u, const Eigen::Vector4f &v,
|
||
|
|
const float angle_threshold)
|
||
|
|
{
|
||
|
|
return (isBoundaryPoint (cloud, cloud[q_idx], indices, u, v, angle_threshold));
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> bool
|
||
|
|
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
|
||
|
|
const pcl::PointCloud<PointInT> &cloud, const PointInT &q_point,
|
||
|
|
const pcl::Indices &indices,
|
||
|
|
const Eigen::Vector4f &u, const Eigen::Vector4f &v,
|
||
|
|
const float angle_threshold)
|
||
|
|
{
|
||
|
|
if (indices.size () < 3)
|
||
|
|
return (false);
|
||
|
|
|
||
|
|
if (!std::isfinite (q_point.x) || !std::isfinite (q_point.y) || !std::isfinite (q_point.z))
|
||
|
|
return (false);
|
||
|
|
|
||
|
|
// Compute the angles between each neighboring point and the query point itself
|
||
|
|
std::vector<float> angles (indices.size ());
|
||
|
|
float max_dif = FLT_MIN, dif;
|
||
|
|
int cp = 0;
|
||
|
|
|
||
|
|
for (const auto &index : indices)
|
||
|
|
{
|
||
|
|
if (!std::isfinite (cloud[index].x) ||
|
||
|
|
!std::isfinite (cloud[index].y) ||
|
||
|
|
!std::isfinite (cloud[index].z))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
Eigen::Vector4f delta = cloud[index].getVector4fMap () - q_point.getVector4fMap ();
|
||
|
|
if (delta == Eigen::Vector4f::Zero())
|
||
|
|
continue;
|
||
|
|
|
||
|
|
angles[cp++] = std::atan2 (v.dot (delta), u.dot (delta)); // the angles are fine between -PI and PI too
|
||
|
|
}
|
||
|
|
if (cp == 0)
|
||
|
|
return (false);
|
||
|
|
|
||
|
|
angles.resize (cp);
|
||
|
|
std::sort (angles.begin (), angles.end ());
|
||
|
|
|
||
|
|
// Compute the maximal angle difference between two consecutive angles
|
||
|
|
for (std::size_t i = 0; i < angles.size () - 1; ++i)
|
||
|
|
{
|
||
|
|
dif = angles[i + 1] - angles[i];
|
||
|
|
if (max_dif < dif)
|
||
|
|
max_dif = dif;
|
||
|
|
}
|
||
|
|
// Get the angle difference between the last and the first
|
||
|
|
dif = 2 * static_cast<float> (M_PI) - angles[angles.size () - 1] + angles[0];
|
||
|
|
if (max_dif < dif)
|
||
|
|
max_dif = dif;
|
||
|
|
|
||
|
|
// Check results
|
||
|
|
return (max_dif > angle_threshold);
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
// Allocate enough space to hold the results
|
||
|
|
// \note This resize is irrelevant for a radiusSearch ().
|
||
|
|
pcl::Indices nn_indices (k_);
|
||
|
|
std::vector<float> nn_dists (k_);
|
||
|
|
|
||
|
|
Eigen::Vector4f u = Eigen::Vector4f::Zero (), v = Eigen::Vector4f::Zero ();
|
||
|
|
|
||
|
|
output.is_dense = true;
|
||
|
|
// Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
|
||
|
|
if (input_->is_dense)
|
||
|
|
{
|
||
|
|
// Iterating over the entire index vector
|
||
|
|
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
|
||
|
|
{
|
||
|
|
if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
|
||
|
|
{
|
||
|
|
output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
|
||
|
|
output.is_dense = false;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Obtain a coordinate system on the least-squares plane
|
||
|
|
//v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
|
||
|
|
//u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
|
||
|
|
getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
|
||
|
|
|
||
|
|
// Estimate whether the point is lying on a boundary surface or not
|
||
|
|
output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
// Iterating over the entire index vector
|
||
|
|
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
|
||
|
|
{
|
||
|
|
if (!isFinite ((*input_)[(*indices_)[idx]]) ||
|
||
|
|
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
|
||
|
|
{
|
||
|
|
output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
|
||
|
|
output.is_dense = false;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Obtain a coordinate system on the least-squares plane
|
||
|
|
//v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
|
||
|
|
//u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
|
||
|
|
getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
|
||
|
|
|
||
|
|
// Estimate whether the point is lying on a boundary surface or not
|
||
|
|
output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_BoundaryEstimation(PointInT,PointNT,PointOutT) template class PCL_EXPORTS pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>;
|
||
|
|
|