243 lines
8.9 KiB
C
243 lines
8.9 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <random>
|
||
|
|
|
||
|
|
#include <pcl/point_types.h>
|
||
|
|
#include <pcl/features/feature.h>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
/** \brief ShapeContext3DEstimation implements the 3D shape context descriptor as
|
||
|
|
* described in:
|
||
|
|
* - Andrea Frome, Daniel Huber, Ravi Kolluri and Thomas Bülow, Jitendra Malik
|
||
|
|
* Recognizing Objects in Range Data Using Regional Point Descriptors,
|
||
|
|
* In proceedings of the 8th European Conference on Computer Vision (ECCV),
|
||
|
|
* Prague, May 11-14, 2004
|
||
|
|
*
|
||
|
|
* The suggested PointOutT is pcl::ShapeContext1980
|
||
|
|
*
|
||
|
|
* \attention
|
||
|
|
* The convention for a 3D shape context descriptor is:
|
||
|
|
* - if a query point's nearest neighbors cannot be estimated, the feature descriptor will be set to NaN (not a number), and the RF to 0
|
||
|
|
* - it is impossible to estimate a 3D shape context descriptor for a
|
||
|
|
* point that doesn't have finite 3D coordinates. Therefore, any point
|
||
|
|
* that contains NaN data on x, y, or z, will have its boundary feature
|
||
|
|
* property set to NaN.
|
||
|
|
*
|
||
|
|
* \author Alessandro Franchi, Samuele Salti, Federico Tombari (original code)
|
||
|
|
* \author Nizar Sallem (port to PCL)
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT = pcl::ShapeContext1980>
|
||
|
|
class ShapeContext3DEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using Ptr = shared_ptr<ShapeContext3DEstimation<PointInT, PointNT, PointOutT> >;
|
||
|
|
using ConstPtr = shared_ptr<const ShapeContext3DEstimation<PointInT, PointNT, PointOutT> >;
|
||
|
|
|
||
|
|
using Feature<PointInT, PointOutT>::feature_name_;
|
||
|
|
using Feature<PointInT, PointOutT>::getClassName;
|
||
|
|
using Feature<PointInT, PointOutT>::indices_;
|
||
|
|
using Feature<PointInT, PointOutT>::search_parameter_;
|
||
|
|
using Feature<PointInT, PointOutT>::search_radius_;
|
||
|
|
using Feature<PointInT, PointOutT>::surface_;
|
||
|
|
using Feature<PointInT, PointOutT>::input_;
|
||
|
|
using Feature<PointInT, PointOutT>::searchForNeighbors;
|
||
|
|
using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
|
||
|
|
|
||
|
|
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
|
||
|
|
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
|
||
|
|
|
||
|
|
/** \brief Constructor.
|
||
|
|
* \param[in] random If true the random seed is set to current time, else it is
|
||
|
|
* set to 12345 prior to computing the descriptor (used to select X axis)
|
||
|
|
*/
|
||
|
|
ShapeContext3DEstimation (bool random = false) :
|
||
|
|
radii_interval_(0),
|
||
|
|
theta_divisions_(0),
|
||
|
|
phi_divisions_(0),
|
||
|
|
volume_lut_(0),
|
||
|
|
azimuth_bins_(12),
|
||
|
|
elevation_bins_(11),
|
||
|
|
radius_bins_(15),
|
||
|
|
min_radius_(0.1),
|
||
|
|
point_density_radius_(0.2),
|
||
|
|
descriptor_length_ (),
|
||
|
|
rng_dist_ (0.0f, 1.0f)
|
||
|
|
{
|
||
|
|
feature_name_ = "ShapeContext3DEstimation";
|
||
|
|
search_radius_ = 2.5;
|
||
|
|
|
||
|
|
// Create a random number generator object
|
||
|
|
if (random)
|
||
|
|
{
|
||
|
|
std::random_device rd;
|
||
|
|
rng_.seed (rd());
|
||
|
|
}
|
||
|
|
else
|
||
|
|
rng_.seed (12345u);
|
||
|
|
}
|
||
|
|
|
||
|
|
~ShapeContext3DEstimation() {}
|
||
|
|
|
||
|
|
//inline void
|
||
|
|
//setAzimuthBins (std::size_t bins) { azimuth_bins_ = bins; }
|
||
|
|
|
||
|
|
/** \return the number of bins along the azimuth */
|
||
|
|
inline std::size_t
|
||
|
|
getAzimuthBins () { return (azimuth_bins_); }
|
||
|
|
|
||
|
|
//inline void
|
||
|
|
//setElevationBins (std::size_t bins) { elevation_bins_ = bins; }
|
||
|
|
|
||
|
|
/** \return The number of bins along the elevation */
|
||
|
|
inline std::size_t
|
||
|
|
getElevationBins () { return (elevation_bins_); }
|
||
|
|
|
||
|
|
//inline void
|
||
|
|
//setRadiusBins (std::size_t bins) { radius_bins_ = bins; }
|
||
|
|
|
||
|
|
/** \return The number of bins along the radii direction */
|
||
|
|
inline std::size_t
|
||
|
|
getRadiusBins () { return (radius_bins_); }
|
||
|
|
|
||
|
|
/** \brief The minimal radius value for the search sphere (rmin) in the original paper
|
||
|
|
* \param[in] radius the desired minimal radius
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setMinimalRadius (double radius) { min_radius_ = radius; }
|
||
|
|
|
||
|
|
/** \return The minimal sphere radius */
|
||
|
|
inline double
|
||
|
|
getMinimalRadius () { return (min_radius_); }
|
||
|
|
|
||
|
|
/** \brief This radius is used to compute local point density
|
||
|
|
* density = number of points within this radius
|
||
|
|
* \param[in] radius value of the point density search radius
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setPointDensityRadius (double radius) { point_density_radius_ = radius; }
|
||
|
|
|
||
|
|
/** \return The point density search radius */
|
||
|
|
inline double
|
||
|
|
getPointDensityRadius () { return (point_density_radius_); }
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief Initialize computation by allocating all the intervals and the volume lookup table. */
|
||
|
|
bool
|
||
|
|
initCompute () override;
|
||
|
|
|
||
|
|
/** \brief Estimate a descriptor for a given point.
|
||
|
|
* \param[in] index the index of the point to estimate a descriptor for
|
||
|
|
* \param[in] normals a pointer to the set of normals
|
||
|
|
* \param[in] rf the reference frame
|
||
|
|
* \param[out] desc the resultant estimated descriptor
|
||
|
|
* \return true if the descriptor was computed successfully, false if there was an error
|
||
|
|
* (e.g. the nearest neighbor didn't return any neighbors)
|
||
|
|
*/
|
||
|
|
bool
|
||
|
|
computePoint (std::size_t index, const pcl::PointCloud<PointNT> &normals, float rf[9], std::vector<float> &desc);
|
||
|
|
|
||
|
|
/** \brief Estimate the actual feature.
|
||
|
|
* \param[out] output the resultant feature
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
computeFeature (PointCloudOut &output) override;
|
||
|
|
|
||
|
|
/** \brief Values of the radii interval */
|
||
|
|
std::vector<float> radii_interval_;
|
||
|
|
|
||
|
|
/** \brief Theta divisions interval */
|
||
|
|
std::vector<float> theta_divisions_;
|
||
|
|
|
||
|
|
/** \brief Phi divisions interval */
|
||
|
|
std::vector<float> phi_divisions_;
|
||
|
|
|
||
|
|
/** \brief Volumes look up table */
|
||
|
|
std::vector<float> volume_lut_;
|
||
|
|
|
||
|
|
/** \brief Bins along the azimuth dimension */
|
||
|
|
std::size_t azimuth_bins_;
|
||
|
|
|
||
|
|
/** \brief Bins along the elevation dimension */
|
||
|
|
std::size_t elevation_bins_;
|
||
|
|
|
||
|
|
/** \brief Bins along the radius dimension */
|
||
|
|
std::size_t radius_bins_;
|
||
|
|
|
||
|
|
/** \brief Minimal radius value */
|
||
|
|
double min_radius_;
|
||
|
|
|
||
|
|
/** \brief Point density radius */
|
||
|
|
double point_density_radius_;
|
||
|
|
|
||
|
|
/** \brief Descriptor length */
|
||
|
|
std::size_t descriptor_length_;
|
||
|
|
|
||
|
|
/** \brief Random number generator algorithm. */
|
||
|
|
std::mt19937 rng_;
|
||
|
|
|
||
|
|
/** \brief Random number generator distribution. */
|
||
|
|
std::uniform_real_distribution<float> rng_dist_;
|
||
|
|
|
||
|
|
/* \brief Shift computed descriptor "L" times along the azimuthal direction
|
||
|
|
* \param[in] block_size the size of each azimuthal block
|
||
|
|
* \param[in] desc at input desc == original descriptor and on output it contains
|
||
|
|
* shifted descriptor resized descriptor_length_ * azimuth_bins_
|
||
|
|
*/
|
||
|
|
//void
|
||
|
|
//shiftAlongAzimuth (std::size_t block_size, std::vector<float>& desc);
|
||
|
|
|
||
|
|
/** \brief Boost-based random number generator. */
|
||
|
|
inline float
|
||
|
|
rnd ()
|
||
|
|
{
|
||
|
|
return (rng_dist_ (rng_));
|
||
|
|
}
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/features/impl/3dsc.hpp>
|
||
|
|
#endif
|