158 lines
7.1 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/ModelCoefficients.h>
#include <pcl/common/common.h>
#include <pcl/common/distances.h>
/**
* \file pcl/common/intersections.h
* Define line with line intersection functions
* \ingroup common
*/
/*@{*/
namespace pcl
{
/** \brief Get the intersection of a two 3D lines in space as a 3D point
* \param[in] line_a the coefficients of the first line (point, direction)
* \param[in] line_b the coefficients of the second line (point, direction)
* \param[out] point holder for the computed 3D point
* \param[in] sqr_eps maximum allowable squared distance to the true solution
* \ingroup common
*/
PCL_EXPORTS inline bool
lineWithLineIntersection (const Eigen::VectorXf &line_a,
const Eigen::VectorXf &line_b,
Eigen::Vector4f &point,
double sqr_eps = 1e-4);
/** \brief Get the intersection of a two 3D lines in space as a 3D point
* \param[in] line_a the coefficients of the first line (point, direction)
* \param[in] line_b the coefficients of the second line (point, direction)
* \param[out] point holder for the computed 3D point
* \param[in] sqr_eps maximum allowable squared distance to the true solution
* \ingroup common
*/
PCL_EXPORTS inline bool
lineWithLineIntersection (const pcl::ModelCoefficients &line_a,
const pcl::ModelCoefficients &line_b,
Eigen::Vector4f &point,
double sqr_eps = 1e-4);
/** \brief Determine the line of intersection of two non-parallel planes using lagrange multipliers
* \note Described in: "Intersection of Two Planes, John Krumm, Microsoft Research, Redmond, WA, USA"
* \param[in] plane_a coefficients of plane A and plane B in the form ax + by + cz + d = 0
* \param[in] plane_b coefficients of line where line.tail<3>() = direction vector and
* line.head<3>() the point on the line clossest to (0, 0, 0)
* \param[out] line the intersected line to be filled
* \param[in] angular_tolerance tolerance in radians
* \return true if succeeded/planes aren't parallel
*/
PCL_EXPORTS template <typename Scalar> bool
planeWithPlaneIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
const Eigen::Matrix<Scalar, 4, 1> &plane_b,
Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line,
double angular_tolerance = 0.1);
PCL_EXPORTS inline bool
planeWithPlaneIntersection (const Eigen::Vector4f &plane_a,
const Eigen::Vector4f &plane_b,
Eigen::VectorXf &line,
double angular_tolerance = 0.1)
{
return (planeWithPlaneIntersection<float> (plane_a, plane_b, line, angular_tolerance));
}
PCL_EXPORTS inline bool
planeWithPlaneIntersection (const Eigen::Vector4d &plane_a,
const Eigen::Vector4d &plane_b,
Eigen::VectorXd &line,
double angular_tolerance = 0.1)
{
return (planeWithPlaneIntersection<double> (plane_a, plane_b, line, angular_tolerance));
}
/** \brief Determine the point of intersection of three non-parallel planes by solving the equations.
* \note If using nearly parallel planes you can lower the determinant_tolerance value. This can
* lead to inconsistent results.
* If the three planes intersects in a line the point will be anywhere on the line.
* \param[in] plane_a are the coefficients of the first plane in the form ax + by + cz + d = 0
* \param[in] plane_b are the coefficients of the second plane
* \param[in] plane_c are the coefficients of the third plane
* \param[in] determinant_tolerance is a limit to determine whether planes are parallel or not
* \param[out] intersection_point the three coordinates x, y, z of the intersection point
* \return true if succeeded/planes aren't parallel
*/
PCL_EXPORTS template <typename Scalar> bool
threePlanesIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
const Eigen::Matrix<Scalar, 4, 1> &plane_b,
const Eigen::Matrix<Scalar, 4, 1> &plane_c,
Eigen::Matrix<Scalar, 3, 1> &intersection_point,
double determinant_tolerance = 1e-6);
PCL_EXPORTS inline bool
threePlanesIntersection (const Eigen::Vector4f &plane_a,
const Eigen::Vector4f &plane_b,
const Eigen::Vector4f &plane_c,
Eigen::Vector3f &intersection_point,
double determinant_tolerance = 1e-6)
{
return (threePlanesIntersection<float> (plane_a, plane_b, plane_c,
intersection_point, determinant_tolerance));
}
PCL_EXPORTS inline bool
threePlanesIntersection (const Eigen::Vector4d &plane_a,
const Eigen::Vector4d &plane_b,
const Eigen::Vector4d &plane_c,
Eigen::Vector3d &intersection_point,
double determinant_tolerance = 1e-6)
{
return (threePlanesIntersection<double> (plane_a, plane_b, plane_c,
intersection_point, determinant_tolerance));
}
}
/*@}*/
#include <pcl/common/impl/intersections.hpp>