162 lines
5.8 KiB
C
Raw Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#pragma once
#if defined __GNUC__
# pragma GCC system_header
#endif
#include <Eigen/Core>
#include <pcl/console/print.h>
/**
* \file common/geometry.h
* Defines some geometrical functions and utility functions
* \ingroup common
*/
/*@{*/
namespace pcl
{
namespace geometry
{
/** @return the euclidean distance between 2 points */
template <typename PointT> inline float
distance (const PointT& p1, const PointT& p2)
{
Eigen::Vector3f diff = p1.getVector3fMap () - p2.getVector3fMap ();
return (diff.norm ());
}
/** @return the squared euclidean distance between 2 points */
template<typename PointT> inline float
squaredDistance (const PointT& p1, const PointT& p2)
{
Eigen::Vector3f diff = p1.getVector3fMap () - p2.getVector3fMap ();
return (diff.squaredNorm ());
}
/** @return the point projection on a plane defined by its origin and normal vector
* \param[in] point Point to be projected
* \param[in] plane_origin The plane origin
* \param[in] plane_normal The plane normal
* \param[out] projected The returned projected point
*/
template<typename PointT, typename NormalT> inline void
project (const PointT& point, const PointT &plane_origin,
const NormalT& plane_normal, PointT& projected)
{
Eigen::Vector3f po = point - plane_origin;
const Eigen::Vector3f normal = plane_normal.getVector3fMapConst ();
float lambda = normal.dot(po);
projected.getVector3fMap () = point.getVector3fMapConst () - (lambda * normal);
}
/** @return the point projection on a plane defined by its origin and normal vector
* \param[in] point Point to be projected
* \param[in] plane_origin The plane origin
* \param[in] plane_normal The plane normal
* \param[out] projected The returned projected point
*/
inline void
project (const Eigen::Vector3f& point, const Eigen::Vector3f &plane_origin,
const Eigen::Vector3f& plane_normal, Eigen::Vector3f& projected)
{
Eigen::Vector3f po = point - plane_origin;
float lambda = plane_normal.dot(po);
projected = point - (lambda * plane_normal);
}
/** \brief Given a plane defined by plane_origin and plane_normal, find the unit vector pointing from plane_origin to the projection of point on the plane.
*
* \param[in] point Point projected on the plane
* \param[in] plane_origin The plane origin
* \param[in] plane_normal The plane normal
* \return unit vector pointing from plane_origin to the projection of point on the plane.
* \ingroup geometry
*/
inline Eigen::Vector3f
projectedAsUnitVector (Eigen::Vector3f const &point,
Eigen::Vector3f const &plane_origin,
Eigen::Vector3f const &plane_normal)
{
Eigen::Vector3f projection;
project (point, plane_origin, plane_normal, projection);
Eigen::Vector3f projected_as_unit_vector = projection - plane_origin;
projected_as_unit_vector.normalize ();
return projected_as_unit_vector;
}
/** \brief Define a random unit vector orthogonal to axis.
*
* \param[in] axis Axis
* \return random unit vector orthogonal to axis
* \ingroup geometry
*/
inline Eigen::Vector3f
randomOrthogonalAxis (Eigen::Vector3f const &axis)
{
Eigen::Vector3f rand_ortho_axis;
rand_ortho_axis.setRandom();
if (std::abs (axis.z ()) > 1E-8f)
{
rand_ortho_axis.z () = -(axis.x () * rand_ortho_axis.x () + axis.y () * rand_ortho_axis.y ()) / axis.z ();
}
else if (std::abs (axis.y ()) > 1E-8f)
{
rand_ortho_axis.y () = -(axis.x () * rand_ortho_axis.x () + axis.z () * rand_ortho_axis.z ()) / axis.y ();
}
else if (std::abs (axis.x ()) > 1E-8f)
{
rand_ortho_axis.x () = -(axis.y () * rand_ortho_axis.y () + axis.z () * rand_ortho_axis.z ()) / axis.x ();
}
else
{
PCL_WARN ("[pcl::randomOrthogonalAxis] provided axis has norm < 1E-8f\n");
}
rand_ortho_axis.normalize ();
return rand_ortho_axis;
}
}
}