604 lines
21 KiB
C++
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id:$
*
*/
#ifndef PCL_SEGMENTATION_MIN_CUT_SEGMENTATION_HPP_
#define PCL_SEGMENTATION_MIN_CUT_SEGMENTATION_HPP_
#include <boost/graph/boykov_kolmogorov_max_flow.hpp> // for boykov_kolmogorov_max_flow
#include <pcl/segmentation/min_cut_segmentation.h>
#include <pcl/search/search.h>
#include <pcl/search/kdtree.h>
#include <cmath>
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::MinCutSegmentation<PointT>::MinCutSegmentation () :
inverse_sigma_ (16.0),
binary_potentials_are_valid_ (false),
epsilon_ (0.0001),
radius_ (16.0),
unary_potentials_are_valid_ (false),
source_weight_ (0.8),
search_ (),
number_of_neighbours_ (14),
graph_is_valid_ (false),
foreground_points_ (0),
background_points_ (0),
clusters_ (0),
vertices_ (0),
edge_marker_ (0),
source_ (),/////////////////////////////////
sink_ (),///////////////////////////////////
max_flow_ (0.0)
{
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::MinCutSegmentation<PointT>::~MinCutSegmentation ()
{
foreground_points_.clear ();
background_points_.clear ();
clusters_.clear ();
vertices_.clear ();
edge_marker_.clear ();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setInputCloud (const PointCloudConstPtr &cloud)
{
input_ = cloud;
graph_is_valid_ = false;
unary_potentials_are_valid_ = false;
binary_potentials_are_valid_ = false;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::MinCutSegmentation<PointT>::getSigma () const
{
return (pow (1.0 / inverse_sigma_, 0.5));
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setSigma (double sigma)
{
if (sigma > epsilon_)
{
inverse_sigma_ = 1.0 / (sigma * sigma);
binary_potentials_are_valid_ = false;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::MinCutSegmentation<PointT>::getRadius () const
{
return (pow (radius_, 0.5));
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setRadius (double radius)
{
if (radius > epsilon_)
{
radius_ = radius * radius;
unary_potentials_are_valid_ = false;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::MinCutSegmentation<PointT>::getSourceWeight () const
{
return (source_weight_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setSourceWeight (double weight)
{
if (weight > epsilon_)
{
source_weight_ = weight;
unary_potentials_are_valid_ = false;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> typename pcl::MinCutSegmentation<PointT>::KdTreePtr
pcl::MinCutSegmentation<PointT>::getSearchMethod () const
{
return (search_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setSearchMethod (const KdTreePtr& tree)
{
search_ = tree;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> unsigned int
pcl::MinCutSegmentation<PointT>::getNumberOfNeighbours () const
{
return (number_of_neighbours_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setNumberOfNeighbours (unsigned int neighbour_number)
{
if (number_of_neighbours_ != neighbour_number && neighbour_number != 0)
{
number_of_neighbours_ = neighbour_number;
graph_is_valid_ = false;
unary_potentials_are_valid_ = false;
binary_potentials_are_valid_ = false;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> std::vector<PointT, Eigen::aligned_allocator<PointT> >
pcl::MinCutSegmentation<PointT>::getForegroundPoints () const
{
return (foreground_points_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setForegroundPoints (typename pcl::PointCloud<PointT>::Ptr foreground_points)
{
foreground_points_.clear ();
foreground_points_.insert(
foreground_points_.end(), foreground_points->cbegin(), foreground_points->cend());
unary_potentials_are_valid_ = false;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> std::vector<PointT, Eigen::aligned_allocator<PointT> >
pcl::MinCutSegmentation<PointT>::getBackgroundPoints () const
{
return (background_points_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::setBackgroundPoints (typename pcl::PointCloud<PointT>::Ptr background_points)
{
background_points_.clear ();
background_points_.insert(
background_points_.end(), background_points->cbegin(), background_points->cend());
unary_potentials_are_valid_ = false;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::extract (std::vector <pcl::PointIndices>& clusters)
{
clusters.clear ();
bool segmentation_is_possible = initCompute ();
if ( !segmentation_is_possible )
{
deinitCompute ();
return;
}
if ( graph_is_valid_ && unary_potentials_are_valid_ && binary_potentials_are_valid_ )
{
clusters.reserve (clusters_.size ());
std::copy (clusters_.begin (), clusters_.end (), std::back_inserter (clusters));
deinitCompute ();
return;
}
clusters_.clear ();
if ( !graph_is_valid_ )
{
bool success = buildGraph ();
if (!success)
{
deinitCompute ();
return;
}
graph_is_valid_ = true;
unary_potentials_are_valid_ = true;
binary_potentials_are_valid_ = true;
}
if ( !unary_potentials_are_valid_ )
{
bool success = recalculateUnaryPotentials ();
if (!success)
{
deinitCompute ();
return;
}
unary_potentials_are_valid_ = true;
}
if ( !binary_potentials_are_valid_ )
{
bool success = recalculateBinaryPotentials ();
if (!success)
{
deinitCompute ();
return;
}
binary_potentials_are_valid_ = true;
}
//IndexMap index_map = boost::get (boost::vertex_index, *graph_);
ResidualCapacityMap residual_capacity = boost::get (boost::edge_residual_capacity, *graph_);
max_flow_ = boost::boykov_kolmogorov_max_flow (*graph_, source_, sink_);
assembleLabels (residual_capacity);
clusters.reserve (clusters_.size ());
std::copy (clusters_.begin (), clusters_.end (), std::back_inserter (clusters));
deinitCompute ();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::MinCutSegmentation<PointT>::getMaxFlow () const
{
return (max_flow_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> typename pcl::MinCutSegmentation<PointT>::mGraphPtr
pcl::MinCutSegmentation<PointT>::getGraph () const
{
return (graph_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> bool
pcl::MinCutSegmentation<PointT>::buildGraph ()
{
const auto number_of_points = input_->size ();
const auto number_of_indices = indices_->size ();
if (input_->points.empty () || number_of_points == 0 || foreground_points_.empty () == true )
return (false);
if (!search_)
search_.reset (new pcl::search::KdTree<PointT>);
graph_.reset (new mGraph);
capacity_.reset (new CapacityMap);
*capacity_ = boost::get (boost::edge_capacity, *graph_);
reverse_edges_.reset (new ReverseEdgeMap);
*reverse_edges_ = boost::get (boost::edge_reverse, *graph_);
VertexDescriptor vertex_descriptor(0);
vertices_.clear ();
vertices_.resize (number_of_points + 2, vertex_descriptor);
std::set<int> out_edges_marker;
edge_marker_.clear ();
edge_marker_.resize (number_of_points + 2, out_edges_marker);
for (std::size_t i_point = 0; i_point < number_of_points + 2; i_point++)
vertices_[i_point] = boost::add_vertex (*graph_);
source_ = vertices_[number_of_points];
sink_ = vertices_[number_of_points + 1];
for (const auto& point_index : (*indices_))
{
double source_weight = 0.0;
double sink_weight = 0.0;
calculateUnaryPotential (point_index, source_weight, sink_weight);
addEdge (static_cast<int> (source_), point_index, source_weight);
addEdge (point_index, static_cast<int> (sink_), sink_weight);
}
pcl::Indices neighbours;
std::vector<float> distances;
search_->setInputCloud (input_, indices_);
for (std::size_t i_point = 0; i_point < number_of_indices; i_point++)
{
index_t point_index = (*indices_)[i_point];
search_->nearestKSearch (i_point, number_of_neighbours_, neighbours, distances);
for (std::size_t i_nghbr = 1; i_nghbr < neighbours.size (); i_nghbr++)
{
double weight = calculateBinaryPotential (point_index, neighbours[i_nghbr]);
addEdge (point_index, neighbours[i_nghbr], weight);
addEdge (neighbours[i_nghbr], point_index, weight);
}
neighbours.clear ();
distances.clear ();
}
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::calculateUnaryPotential (int point, double& source_weight, double& sink_weight) const
{
double min_dist_to_foreground = std::numeric_limits<double>::max ();
//double min_dist_to_background = std::numeric_limits<double>::max ();
//double closest_background_point[] = {0.0, 0.0};
double initial_point[] = {0.0, 0.0};
initial_point[0] = (*input_)[point].x;
initial_point[1] = (*input_)[point].y;
for (const auto& fg_point : foreground_points_)
{
double dist = 0.0;
dist += (fg_point.x - initial_point[0]) * (fg_point.x - initial_point[0]);
dist += (fg_point.y - initial_point[1]) * (fg_point.y - initial_point[1]);
if (min_dist_to_foreground > dist)
{
min_dist_to_foreground = dist;
}
}
sink_weight = pow (min_dist_to_foreground / radius_, 0.5);
source_weight = source_weight_;
return;
/*
if (background_points_.size () == 0)
return;
for (const auto& bg_point : background_points_)
{
double dist = 0.0;
dist += (bg_point.x - initial_point[0]) * (bg_point.x - initial_point[0]);
dist += (bg_point.y - initial_point[1]) * (bg_point.y - initial_point[1]);
if (min_dist_to_background > dist)
{
min_dist_to_background = dist;
closest_background_point[0] = bg_point.x;
closest_background_point[1] = bg_point.y;
}
}
if (min_dist_to_background <= epsilon_)
{
source_weight = 0.0;
sink_weight = 1.0;
return;
}
source_weight = 1.0 / (1.0 + pow (min_dist_to_background / min_dist_to_foreground, 0.5));
sink_weight = 1 - source_weight;
*/
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> bool
pcl::MinCutSegmentation<PointT>::addEdge (int source, int target, double weight)
{
std::set<int>::iterator iter_out = edge_marker_[source].find (target);
if ( iter_out != edge_marker_[source].end () )
return (false);
EdgeDescriptor edge;
EdgeDescriptor reverse_edge;
bool edge_was_added, reverse_edge_was_added;
boost::tie (edge, edge_was_added) = boost::add_edge ( vertices_[source], vertices_[target], *graph_ );
boost::tie (reverse_edge, reverse_edge_was_added) = boost::add_edge ( vertices_[target], vertices_[source], *graph_ );
if ( !edge_was_added || !reverse_edge_was_added )
return (false);
(*capacity_)[edge] = weight;
(*capacity_)[reverse_edge] = 0.0;
(*reverse_edges_)[edge] = reverse_edge;
(*reverse_edges_)[reverse_edge] = edge;
edge_marker_[source].insert (target);
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::MinCutSegmentation<PointT>::calculateBinaryPotential (int source, int target) const
{
double weight = 0.0;
double distance = 0.0;
distance += ((*input_)[source].x - (*input_)[target].x) * ((*input_)[source].x - (*input_)[target].x);
distance += ((*input_)[source].y - (*input_)[target].y) * ((*input_)[source].y - (*input_)[target].y);
distance += ((*input_)[source].z - (*input_)[target].z) * ((*input_)[source].z - (*input_)[target].z);
distance *= inverse_sigma_;
weight = std::exp (-distance);
return (weight);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> bool
pcl::MinCutSegmentation<PointT>::recalculateUnaryPotentials ()
{
OutEdgeIterator src_edge_iter;
OutEdgeIterator src_edge_end;
std::pair<EdgeDescriptor, bool> sink_edge;
for (boost::tie (src_edge_iter, src_edge_end) = boost::out_edges (source_, *graph_); src_edge_iter != src_edge_end; src_edge_iter++)
{
double source_weight = 0.0;
double sink_weight = 0.0;
sink_edge.second = false;
calculateUnaryPotential (static_cast<int> (boost::target (*src_edge_iter, *graph_)), source_weight, sink_weight);
sink_edge = boost::lookup_edge (boost::target (*src_edge_iter, *graph_), sink_, *graph_);
if (!sink_edge.second)
return (false);
(*capacity_)[*src_edge_iter] = source_weight;
(*capacity_)[sink_edge.first] = sink_weight;
}
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> bool
pcl::MinCutSegmentation<PointT>::recalculateBinaryPotentials ()
{
VertexIterator vertex_iter;
VertexIterator vertex_end;
OutEdgeIterator edge_iter;
OutEdgeIterator edge_end;
std::vector< std::set<VertexDescriptor> > edge_marker;
std::set<VertexDescriptor> out_edges_marker;
edge_marker.clear ();
edge_marker.resize (indices_->size () + 2, out_edges_marker);
for (boost::tie (vertex_iter, vertex_end) = boost::vertices (*graph_); vertex_iter != vertex_end; vertex_iter++)
{
VertexDescriptor source_vertex = *vertex_iter;
if (source_vertex == source_ || source_vertex == sink_)
continue;
for (boost::tie (edge_iter, edge_end) = boost::out_edges (source_vertex, *graph_); edge_iter != edge_end; edge_iter++)
{
//If this is not the edge of the graph, but the reverse fictitious edge that is needed for the algorithm then continue
EdgeDescriptor reverse_edge = (*reverse_edges_)[*edge_iter];
if ((*capacity_)[reverse_edge] != 0.0)
continue;
//If we already changed weight for this edge then continue
VertexDescriptor target_vertex = boost::target (*edge_iter, *graph_);
std::set<VertexDescriptor>::iterator iter_out = edge_marker[static_cast<int> (source_vertex)].find (target_vertex);
if ( iter_out != edge_marker[static_cast<int> (source_vertex)].end () )
continue;
if (target_vertex != source_ && target_vertex != sink_)
{
//Change weight and remember that this edges were updated
double weight = calculateBinaryPotential (static_cast<int> (target_vertex), static_cast<int> (source_vertex));
(*capacity_)[*edge_iter] = weight;
edge_marker[static_cast<int> (source_vertex)].insert (target_vertex);
}
}
}
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::MinCutSegmentation<PointT>::assembleLabels (ResidualCapacityMap& residual_capacity)
{
std::vector<int> labels;
labels.resize (input_->size (), 0);
for (const auto& i_point : (*indices_))
labels[i_point] = 1;
clusters_.clear ();
pcl::PointIndices segment;
clusters_.resize (2, segment);
OutEdgeIterator edge_iter, edge_end;
for ( boost::tie (edge_iter, edge_end) = boost::out_edges (source_, *graph_); edge_iter != edge_end; edge_iter++ )
{
if (labels[edge_iter->m_target] == 1)
{
if (residual_capacity[*edge_iter] > epsilon_)
clusters_[1].indices.push_back (static_cast<int> (edge_iter->m_target));
else
clusters_[0].indices.push_back (static_cast<int> (edge_iter->m_target));
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> pcl::PointCloud<pcl::PointXYZRGB>::Ptr
pcl::MinCutSegmentation<PointT>::getColoredCloud ()
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud;
if (!clusters_.empty ())
{
colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared ();
unsigned char foreground_color[3] = {255, 255, 255};
unsigned char background_color[3] = {255, 0, 0};
colored_cloud->width = (clusters_[0].indices.size () + clusters_[1].indices.size ());
colored_cloud->height = 1;
colored_cloud->is_dense = input_->is_dense;
pcl::PointXYZRGB point;
for (const auto& point_index : (clusters_[0].indices))
{
point.x = *((*input_)[point_index].data);
point.y = *((*input_)[point_index].data + 1);
point.z = *((*input_)[point_index].data + 2);
point.r = background_color[0];
point.g = background_color[1];
point.b = background_color[2];
colored_cloud->points.push_back (point);
}
for (const auto& point_index : (clusters_[1].indices))
{
point.x = *((*input_)[point_index].data);
point.y = *((*input_)[point_index].data + 1);
point.z = *((*input_)[point_index].data + 2);
point.r = foreground_color[0];
point.g = foreground_color[1];
point.b = foreground_color[2];
colored_cloud->points.push_back (point);
}
}
return (colored_cloud);
}
#define PCL_INSTANTIATE_MinCutSegmentation(T) template class pcl::MinCutSegmentation<T>;
#endif // PCL_SEGMENTATION_MIN_CUT_SEGMENTATION_HPP_