263 lines
9.1 KiB
C
263 lines
9.1 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Copyright (c) 2011, Willow Garage, Inc.
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/search/search.h>
|
||
|
|
#include <pcl/pcl_base.h>
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief Decompose a region of space into clusters based on the Euclidean distance
|
||
|
|
* between points
|
||
|
|
* \param[in] cloud the point cloud message
|
||
|
|
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors
|
||
|
|
* searching
|
||
|
|
* \note the tree has to be created as a spatial locator on \a cloud
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
|
||
|
|
* \param[out] labeled_clusters the resultant clusters containing point indices (as a
|
||
|
|
* vector of PointIndices)
|
||
|
|
* \param[in] min_pts_per_cluster minimum number of points that a cluster may contain
|
||
|
|
* (default: 1)
|
||
|
|
* \param[in] max_pts_per_cluster maximum number of points that a cluster may contain
|
||
|
|
* (default: max int)
|
||
|
|
* \param[in] max_label
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
template <typename PointT>
|
||
|
|
PCL_DEPRECATED(1, 14, "Use of max_label is deprecated")
|
||
|
|
void extractLabeledEuclideanClusters(
|
||
|
|
const PointCloud<PointT>& cloud,
|
||
|
|
const typename search::Search<PointT>::Ptr& tree,
|
||
|
|
float tolerance,
|
||
|
|
std::vector<std::vector<PointIndices>>& labeled_clusters,
|
||
|
|
unsigned int min_pts_per_cluster,
|
||
|
|
unsigned int max_pts_per_cluster,
|
||
|
|
unsigned int max_label);
|
||
|
|
|
||
|
|
/** \brief Decompose a region of space into clusters based on the Euclidean distance
|
||
|
|
* between points
|
||
|
|
* \param[in] cloud the point cloud message
|
||
|
|
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors
|
||
|
|
* searching \note the tree has to be created as a spatial locator on \a cloud
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
|
||
|
|
* \param[out] labeled_clusters the resultant clusters containing point indices
|
||
|
|
* (as a vector of PointIndices)
|
||
|
|
* \param[in] min_pts_per_cluster minimum number of points that a cluster may contain
|
||
|
|
* (default: 1)
|
||
|
|
* \param[in] max_pts_per_cluster maximum number of points that a cluster may contain
|
||
|
|
* (default: max int)
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
template <typename PointT>
|
||
|
|
void
|
||
|
|
extractLabeledEuclideanClusters(
|
||
|
|
const PointCloud<PointT>& cloud,
|
||
|
|
const typename search::Search<PointT>::Ptr& tree,
|
||
|
|
float tolerance,
|
||
|
|
std::vector<std::vector<PointIndices>>& labeled_clusters,
|
||
|
|
unsigned int min_pts_per_cluster = 1,
|
||
|
|
unsigned int max_pts_per_cluster = std::numeric_limits<unsigned int>::max());
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief @b LabeledEuclideanClusterExtraction represents a segmentation class for
|
||
|
|
* cluster extraction in an Euclidean sense, with label info. \author Koen Buys
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
template <typename PointT>
|
||
|
|
class LabeledEuclideanClusterExtraction : public PCLBase<PointT> {
|
||
|
|
using BasePCLBase = PCLBase<PointT>;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using PointCloud = pcl::PointCloud<PointT>;
|
||
|
|
using PointCloudPtr = typename PointCloud::Ptr;
|
||
|
|
using PointCloudConstPtr = typename PointCloud::ConstPtr;
|
||
|
|
|
||
|
|
using KdTree = pcl::search::Search<PointT>;
|
||
|
|
using KdTreePtr = typename KdTree::Ptr;
|
||
|
|
|
||
|
|
using PointIndicesPtr = PointIndices::Ptr;
|
||
|
|
using PointIndicesConstPtr = PointIndices::ConstPtr;
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
LabeledEuclideanClusterExtraction()
|
||
|
|
: tree_()
|
||
|
|
, cluster_tolerance_(0)
|
||
|
|
, min_pts_per_cluster_(1)
|
||
|
|
, max_pts_per_cluster_(std::numeric_limits<int>::max())
|
||
|
|
, max_label_(std::numeric_limits<int>::max()){};
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the search object.
|
||
|
|
* \param[in] tree a pointer to the spatial search object.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setSearchMethod(const KdTreePtr& tree)
|
||
|
|
{
|
||
|
|
tree_ = tree;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the search method used. */
|
||
|
|
inline KdTreePtr
|
||
|
|
getSearchMethod() const
|
||
|
|
{
|
||
|
|
return (tree_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
|
||
|
|
* \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean
|
||
|
|
* space
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setClusterTolerance(double tolerance)
|
||
|
|
{
|
||
|
|
cluster_tolerance_ = tolerance;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space.
|
||
|
|
*/
|
||
|
|
inline double
|
||
|
|
getClusterTolerance() const
|
||
|
|
{
|
||
|
|
return (cluster_tolerance_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the minimum number of points that a cluster needs to contain in order
|
||
|
|
* to be considered valid. \param[in] min_cluster_size the minimum cluster size
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setMinClusterSize(int min_cluster_size)
|
||
|
|
{
|
||
|
|
min_pts_per_cluster_ = min_cluster_size;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the minimum number of points that a cluster needs to contain in order
|
||
|
|
* to be considered valid. */
|
||
|
|
inline int
|
||
|
|
getMinClusterSize() const
|
||
|
|
{
|
||
|
|
return (min_pts_per_cluster_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the maximum number of points that a cluster needs to contain in order
|
||
|
|
* to be considered valid. \param[in] max_cluster_size the maximum cluster size
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setMaxClusterSize(int max_cluster_size)
|
||
|
|
{
|
||
|
|
max_pts_per_cluster_ = max_cluster_size;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the maximum number of points that a cluster needs to contain in order
|
||
|
|
* to be considered valid. */
|
||
|
|
inline int
|
||
|
|
getMaxClusterSize() const
|
||
|
|
{
|
||
|
|
return (max_pts_per_cluster_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the maximum number of labels in the cloud.
|
||
|
|
* \param[in] max_label the maximum
|
||
|
|
*/
|
||
|
|
PCL_DEPRECATED(1, 14, "Max label is being deprecated")
|
||
|
|
inline void
|
||
|
|
setMaxLabels(unsigned int max_label)
|
||
|
|
{
|
||
|
|
max_label_ = max_label;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the maximum number of labels */
|
||
|
|
PCL_DEPRECATED(1, 14, "Max label is being deprecated")
|
||
|
|
inline unsigned int
|
||
|
|
getMaxLabels() const
|
||
|
|
{
|
||
|
|
return (max_label_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices
|
||
|
|
* ()> \param[out] labeled_clusters the resultant point clusters
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
extract(std::vector<std::vector<PointIndices>>& labeled_clusters);
|
||
|
|
|
||
|
|
protected:
|
||
|
|
// Members derived from the base class
|
||
|
|
using BasePCLBase::deinitCompute;
|
||
|
|
using BasePCLBase::indices_;
|
||
|
|
using BasePCLBase::initCompute;
|
||
|
|
using BasePCLBase::input_;
|
||
|
|
|
||
|
|
/** \brief A pointer to the spatial search object. */
|
||
|
|
KdTreePtr tree_;
|
||
|
|
|
||
|
|
/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
|
||
|
|
double cluster_tolerance_;
|
||
|
|
|
||
|
|
/** \brief The minimum number of points that a cluster needs to contain in order to be
|
||
|
|
* considered valid (default = 1). */
|
||
|
|
int min_pts_per_cluster_;
|
||
|
|
|
||
|
|
/** \brief The maximum number of points that a cluster needs to contain in order to be
|
||
|
|
* considered valid (default = MAXINT). */
|
||
|
|
int max_pts_per_cluster_;
|
||
|
|
|
||
|
|
/** \brief The maximum number of labels we can find in this pointcloud (default =
|
||
|
|
* MAXINT)*/
|
||
|
|
unsigned int max_label_;
|
||
|
|
|
||
|
|
/** \brief Class getName method. */
|
||
|
|
virtual std::string
|
||
|
|
getClassName() const
|
||
|
|
{
|
||
|
|
return ("LabeledEuclideanClusterExtraction");
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
/** \brief Sort clusters method (for std::sort).
|
||
|
|
* \ingroup segmentation
|
||
|
|
*/
|
||
|
|
inline bool
|
||
|
|
compareLabeledPointClusters(const pcl::PointIndices& a, const pcl::PointIndices& b)
|
||
|
|
{
|
||
|
|
return (a.indices.size() < b.indices.size());
|
||
|
|
}
|
||
|
|
} // namespace pcl
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/segmentation/impl/extract_labeled_clusters.hpp>
|
||
|
|
#endif
|