439 lines
17 KiB
C++
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_SEARCH_IMPL_FLANN_SEARCH_H_
#define PCL_SEARCH_IMPL_FLANN_SEARCH_H_
#include <flann/algorithms/kdtree_index.h>
#include <flann/algorithms/kdtree_single_index.h>
#include <flann/algorithms/kmeans_index.h>
#include <pcl/search/flann_search.h>
#include <pcl/kdtree/kdtree_flann.h> // for radius_search, knn_search
// @TODO: remove once constexpr makes it easy to have the function in the header only
#include <pcl/kdtree/impl/kdtree_flann.hpp>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance>
typename pcl::search::FlannSearch<PointT, FlannDistance>::IndexPtr
pcl::search::FlannSearch<PointT, FlannDistance>::KdTreeIndexCreator::createIndex (MatrixConstPtr data)
{
return (IndexPtr (new flann::KDTreeSingleIndex<FlannDistance> (*data,flann::KDTreeSingleIndexParams (max_leaf_size_))));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance>
typename pcl::search::FlannSearch<PointT, FlannDistance>::IndexPtr
pcl::search::FlannSearch<PointT, FlannDistance>::KMeansIndexCreator::createIndex (MatrixConstPtr data)
{
return (IndexPtr (new flann::KMeansIndex<FlannDistance> (*data,flann::KMeansIndexParams ())));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance>
typename pcl::search::FlannSearch<PointT, FlannDistance>::IndexPtr
pcl::search::FlannSearch<PointT, FlannDistance>::KdTreeMultiIndexCreator::createIndex (MatrixConstPtr data)
{
return (IndexPtr (new flann::KDTreeIndex<FlannDistance> (*data, flann::KDTreeIndexParams (trees_))));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance>
pcl::search::FlannSearch<PointT, FlannDistance>::FlannSearch(bool sorted, FlannIndexCreatorPtr creator) : pcl::search::Search<PointT> ("FlannSearch",sorted),
index_(), creator_ (creator), eps_ (0), checks_ (32), input_copied_for_flann_ (false), point_representation_ (new DefaultPointRepresentation<PointT>),
dim_ (0), identity_mapping_()
{
dim_ = point_representation_->getNumberOfDimensions ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance>
pcl::search::FlannSearch<PointT, FlannDistance>::~FlannSearch()
{
if (input_copied_for_flann_)
delete [] input_flann_->ptr();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> void
pcl::search::FlannSearch<PointT, FlannDistance>::setInputCloud (const PointCloudConstPtr& cloud, const IndicesConstPtr& indices)
{
input_ = cloud;
indices_ = indices;
convertInputToFlannMatrix ();
index_ = creator_->createIndex (input_flann_);
index_->buildIndex ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> int
pcl::search::FlannSearch<PointT, FlannDistance>::nearestKSearch (const PointT &point, int k, Indices &indices, std::vector<float> &dists) const
{
assert (point_representation_->isValid (point) && "Invalid (NaN, Inf) point coordinates given to nearestKSearch!"); // remove this check as soon as FLANN does NaN checks internally
bool can_cast = point_representation_->isTrivial ();
float* data = nullptr;
if (!can_cast)
{
data = new float [point_representation_->getNumberOfDimensions ()];
point_representation_->vectorize (point,data);
}
float* cdata = can_cast ? const_cast<float*> (reinterpret_cast<const float*> (&point)): data;
const flann::Matrix<float> m (cdata ,1, point_representation_->getNumberOfDimensions ());
flann::SearchParams p;
p.eps = eps_;
p.sorted = sorted_results_;
p.checks = checks_;
if (indices.size() != static_cast<unsigned int> (k))
indices.resize (k,-1);
if (dists.size() != static_cast<unsigned int> (k))
dists.resize (k);
flann::Matrix<float> d (&dists[0],1,k);
int result = knn_search(*index_, m, indices, d, k, p);
delete [] data;
if (!identity_mapping_)
{
for (std::size_t i = 0; i < static_cast<unsigned int> (k); ++i)
{
auto& neighbor_index = indices[i];
neighbor_index = index_mapping_[neighbor_index];
}
}
return result;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> void
pcl::search::FlannSearch<PointT, FlannDistance>::nearestKSearch (
const PointCloud& cloud, const Indices& indices, int k, std::vector<Indices>& k_indices,
std::vector< std::vector<float> >& k_sqr_distances) const
{
if (indices.empty ())
{
k_indices.resize (cloud.size ());
k_sqr_distances.resize (cloud.size ());
if (! cloud.is_dense) // remove this check as soon as FLANN does NaN checks internally
{
for (std::size_t i = 0; i < cloud.size(); i++)
{
assert (point_representation_->isValid (cloud[i]) && "Invalid (NaN, Inf) point coordinates given to nearestKSearch!");
}
}
bool can_cast = point_representation_->isTrivial ();
// full point cloud + trivial copy operation = no need to do any conversion/copying to the flann matrix!
float* data=nullptr;
if (!can_cast)
{
data = new float[dim_*cloud.size ()];
for (std::size_t i = 0; i < cloud.size (); ++i)
{
float* out = data+i*dim_;
point_representation_->vectorize (cloud[i],out);
}
}
// const cast is evil, but the matrix constructor won't change the data, and the
// search won't change the matrix
float* cdata = can_cast ? const_cast<float*> (reinterpret_cast<const float*> (&cloud[0])): data;
const flann::Matrix<float> m (cdata ,cloud.size (), dim_, can_cast ? sizeof (PointT) : dim_ * sizeof (float) );
flann::SearchParams p;
p.sorted = sorted_results_;
p.eps = eps_;
p.checks = checks_;
knn_search(*index_, m, k_indices, k_sqr_distances, k, p);
delete [] data;
}
else // if indices are present, the cloud has to be copied anyway. Only copy the relevant parts of the points here.
{
k_indices.resize (indices.size ());
k_sqr_distances.resize (indices.size ());
if (! cloud.is_dense) // remove this check as soon as FLANN does NaN checks internally
{
for (std::size_t i = 0; i < indices.size(); i++)
{
assert (point_representation_->isValid (cloud [indices[i]]) && "Invalid (NaN, Inf) point coordinates given to nearestKSearch!");
}
}
float* data=new float [dim_*indices.size ()];
for (std::size_t i = 0; i < indices.size (); ++i)
{
float* out = data+i*dim_;
point_representation_->vectorize (cloud[indices[i]],out);
}
const flann::Matrix<float> m (data ,indices.size (), point_representation_->getNumberOfDimensions ());
flann::SearchParams p;
p.sorted = sorted_results_;
p.eps = eps_;
p.checks = checks_;
knn_search(*index_, m, k_indices, k_sqr_distances, k, p);
delete[] data;
}
if (!identity_mapping_)
{
for (auto &k_index : k_indices)
{
for (auto &neighbor_index : k_index)
{
neighbor_index = index_mapping_[neighbor_index];
}
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> int
pcl::search::FlannSearch<PointT, FlannDistance>::radiusSearch (const PointT& point, double radius,
Indices &indices, std::vector<float> &distances,
unsigned int max_nn) const
{
assert (point_representation_->isValid (point) && "Invalid (NaN, Inf) point coordinates given to radiusSearch!"); // remove this check as soon as FLANN does NaN checks internally
bool can_cast = point_representation_->isTrivial ();
float* data = nullptr;
if (!can_cast)
{
data = new float [point_representation_->getNumberOfDimensions ()];
point_representation_->vectorize (point,data);
}
float* cdata = can_cast ? const_cast<float*> (reinterpret_cast<const float*> (&point)) : data;
const flann::Matrix<float> m (cdata ,1, point_representation_->getNumberOfDimensions ());
flann::SearchParams p;
p.sorted = sorted_results_;
p.eps = eps_;
p.max_neighbors = max_nn > 0 ? max_nn : -1;
p.checks = checks_;
std::vector<Indices> i (1);
std::vector<std::vector<float> > d (1);
int result = radius_search(*index_, m, i, d, static_cast<float>(radius * radius), p);
delete [] data;
indices = i [0];
distances = d [0];
if (!identity_mapping_)
{
for (auto &neighbor_index : indices)
{
neighbor_index = index_mapping_ [neighbor_index];
}
}
return result;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> void
pcl::search::FlannSearch<PointT, FlannDistance>::radiusSearch (
const PointCloud& cloud, const Indices& indices, double radius, std::vector<Indices>& k_indices,
std::vector< std::vector<float> >& k_sqr_distances, unsigned int max_nn) const
{
if (indices.empty ()) // full point cloud + trivial copy operation = no need to do any conversion/copying to the flann matrix!
{
k_indices.resize (cloud.size ());
k_sqr_distances.resize (cloud.size ());
if (! cloud.is_dense) // remove this check as soon as FLANN does NaN checks internally
{
for (std::size_t i = 0; i < cloud.size(); i++)
{
assert (point_representation_->isValid (cloud[i]) && "Invalid (NaN, Inf) point coordinates given to radiusSearch!");
}
}
bool can_cast = point_representation_->isTrivial ();
float* data = nullptr;
if (!can_cast)
{
data = new float[dim_*cloud.size ()];
for (std::size_t i = 0; i < cloud.size (); ++i)
{
float* out = data+i*dim_;
point_representation_->vectorize (cloud[i],out);
}
}
float* cdata = can_cast ? const_cast<float*> (reinterpret_cast<const float*> (&cloud[0])) : data;
const flann::Matrix<float> m (cdata ,cloud.size (), dim_, can_cast ? sizeof (PointT) : dim_ * sizeof (float));
flann::SearchParams p;
p.sorted = sorted_results_;
p.eps = eps_;
p.checks = checks_;
// here: max_nn==0: take all neighbors. flann: max_nn==0: return no neighbors, only count them. max_nn==-1: return all neighbors
p.max_neighbors = max_nn != 0 ? max_nn : -1;
radius_search(
*index_, m, k_indices, k_sqr_distances, static_cast<float>(radius * radius), p);
delete [] data;
}
else // if indices are present, the cloud has to be copied anyway. Only copy the relevant parts of the points here.
{
k_indices.resize (indices.size ());
k_sqr_distances.resize (indices.size ());
if (! cloud.is_dense) // remove this check as soon as FLANN does NaN checks internally
{
for (std::size_t i = 0; i < indices.size(); i++)
{
assert (point_representation_->isValid (cloud [indices[i]]) && "Invalid (NaN, Inf) point coordinates given to radiusSearch!");
}
}
float* data = new float [dim_ * indices.size ()];
for (std::size_t i = 0; i < indices.size (); ++i)
{
float* out = data+i*dim_;
point_representation_->vectorize (cloud[indices[i]], out);
}
const flann::Matrix<float> m (data, cloud.size (), point_representation_->getNumberOfDimensions ());
flann::SearchParams p;
p.sorted = sorted_results_;
p.eps = eps_;
p.checks = checks_;
// here: max_nn==0: take all neighbors. flann: max_nn==0: return no neighbors, only count them. max_nn==-1: return all neighbors
p.max_neighbors = max_nn != 0 ? max_nn : -1;
radius_search(
*index_, m, k_indices, k_sqr_distances, static_cast<float>(radius * radius), p);
delete[] data;
}
if (!identity_mapping_)
{
for (auto &k_index : k_indices)
{
for (auto &neighbor_index : k_index)
{
neighbor_index = index_mapping_[neighbor_index];
}
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT, typename FlannDistance> void
pcl::search::FlannSearch<PointT, FlannDistance>::convertInputToFlannMatrix ()
{
std::size_t original_no_of_points = indices_ && !indices_->empty () ? indices_->size () : input_->size ();
if (input_copied_for_flann_)
delete input_flann_->ptr();
input_copied_for_flann_ = true;
index_mapping_.clear();
identity_mapping_ = true;
//cloud_ = (float*)malloc (original_no_of_points * dim_ * sizeof (float));
//index_mapping_.reserve(original_no_of_points);
//identity_mapping_ = true;
if (!indices_ || indices_->empty ())
{
// best case: all points can be passed to flann without any conversions
if (input_->is_dense && point_representation_->isTrivial ())
{
// const cast is evil, but flann won't change the data
input_flann_ = MatrixPtr (new flann::Matrix<float> (const_cast<float*>(reinterpret_cast<const float*>(&(*input_) [0])), original_no_of_points, point_representation_->getNumberOfDimensions (),sizeof (PointT)));
input_copied_for_flann_ = false;
}
else
{
input_flann_ = MatrixPtr (new flann::Matrix<float> (new float[original_no_of_points*point_representation_->getNumberOfDimensions ()], original_no_of_points, point_representation_->getNumberOfDimensions ()));
float* cloud_ptr = input_flann_->ptr();
for (std::size_t i = 0; i < original_no_of_points; ++i)
{
const PointT& point = (*input_)[i];
// Check if the point is invalid
if (!point_representation_->isValid (point))
{
identity_mapping_ = false;
continue;
}
index_mapping_.push_back (static_cast<index_t> (i)); // If the returned index should be for the indices vector
point_representation_->vectorize (point, cloud_ptr);
cloud_ptr += dim_;
}
}
}
else
{
input_flann_ = MatrixPtr (new flann::Matrix<float> (new float[original_no_of_points*point_representation_->getNumberOfDimensions ()], original_no_of_points, point_representation_->getNumberOfDimensions ()));
float* cloud_ptr = input_flann_->ptr();
for (std::size_t indices_index = 0; indices_index < original_no_of_points; ++indices_index)
{
index_t cloud_index = (*indices_)[indices_index];
const PointT& point = (*input_)[cloud_index];
// Check if the point is invalid
if (!point_representation_->isValid (point))
{
identity_mapping_ = false;
continue;
}
index_mapping_.push_back (static_cast<index_t> (indices_index)); // If the returned index should be for the indices vector
point_representation_->vectorize (point, cloud_ptr);
cloud_ptr += dim_;
}
}
if (input_copied_for_flann_)
input_flann_->rows = index_mapping_.size ();
}
#define PCL_INSTANTIATE_FlannSearch(T) template class PCL_EXPORTS pcl::search::FlannSearch<T>;
#endif