350 lines
15 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/pcl_base.h>
#include <pcl/sample_consensus/sac_model.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/common/eigen.h>
#include <pcl/common/centroid.h>
#include <map>
#include <numeric> // for std::iota
namespace pcl
{
/** \brief SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection.
* \author Radu Bogdan Rusu
* \ingroup sample_consensus
*/
template <typename PointT>
class SampleConsensusModelRegistration : public SampleConsensusModel<PointT>
{
public:
using SampleConsensusModel<PointT>::model_name_;
using SampleConsensusModel<PointT>::input_;
using SampleConsensusModel<PointT>::indices_;
using SampleConsensusModel<PointT>::error_sqr_dists_;
using SampleConsensusModel<PointT>::isModelValid;
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
using Ptr = shared_ptr<SampleConsensusModelRegistration<PointT> >;
using ConstPtr = shared_ptr<const SampleConsensusModelRegistration<PointT>>;
/** \brief Constructor for base SampleConsensusModelRegistration.
* \param[in] cloud the input point cloud dataset
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelRegistration (const PointCloudConstPtr &cloud,
bool random = false)
: SampleConsensusModel<PointT> (cloud, random)
, target_ ()
, sample_dist_thresh_ (0)
{
// Call our own setInputCloud
setInputCloud (cloud);
model_name_ = "SampleConsensusModelRegistration";
sample_size_ = 3;
model_size_ = 16;
}
/** \brief Constructor for base SampleConsensusModelRegistration.
* \param[in] cloud the input point cloud dataset
* \param[in] indices a vector of point indices to be used from \a cloud
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
*/
SampleConsensusModelRegistration (const PointCloudConstPtr &cloud,
const Indices &indices,
bool random = false)
: SampleConsensusModel<PointT> (cloud, indices, random)
, target_ ()
, sample_dist_thresh_ (0)
{
computeOriginalIndexMapping ();
computeSampleDistanceThreshold (cloud, indices);
model_name_ = "SampleConsensusModelRegistration";
sample_size_ = 3;
model_size_ = 16;
}
/** \brief Empty destructor */
~SampleConsensusModelRegistration () {}
/** \brief Provide a pointer to the input dataset
* \param[in] cloud the const boost shared pointer to a PointCloud message
*/
inline void
setInputCloud (const PointCloudConstPtr &cloud) override
{
SampleConsensusModel<PointT>::setInputCloud (cloud);
computeOriginalIndexMapping ();
computeSampleDistanceThreshold (cloud);
}
/** \brief Set the input point cloud target.
* \param[in] target the input point cloud target
*/
inline void
setInputTarget (const PointCloudConstPtr &target)
{
target_ = target;
// Cache the size and fill the target indices
const index_t target_size = static_cast<index_t> (target->size ());
indices_tgt_.reset (new Indices (target_size));
std::iota (indices_tgt_->begin (), indices_tgt_->end (), 0);
computeOriginalIndexMapping ();
}
/** \brief Set the input point cloud target.
* \param[in] target the input point cloud target
* \param[in] indices_tgt a vector of point indices to be used from \a target
*/
inline void
setInputTarget (const PointCloudConstPtr &target, const Indices &indices_tgt)
{
target_ = target;
indices_tgt_.reset (new Indices (indices_tgt));
computeOriginalIndexMapping ();
}
/** \brief Compute a 4x4 rigid transformation matrix from the samples given
* \param[in] samples the indices found as good candidates for creating a valid model
* \param[out] model_coefficients the resultant model coefficients
*/
bool
computeModelCoefficients (const Indices &samples,
Eigen::VectorXf &model_coefficients) const override;
/** \brief Compute all distances from the transformed points to their correspondences
* \param[in] model_coefficients the 4x4 transformation matrix
* \param[out] distances the resultant estimated distances
*/
void
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
std::vector<double> &distances) const override;
/** \brief Select all the points which respect the given model coefficients as inliers.
* \param[in] model_coefficients the 4x4 transformation matrix
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
* \param[out] inliers the resultant model inliers
*/
void
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold,
Indices &inliers) override;
/** \brief Count all the points which respect the given model coefficients as inliers.
*
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
* \return the resultant number of inliers
*/
std::size_t
countWithinDistance (const Eigen::VectorXf &model_coefficients,
const double threshold) const override;
/** \brief Recompute the 4x4 transformation using the given inlier set
* \param[in] inliers the data inliers found as supporting the model
* \param[in] model_coefficients the initial guess for the optimization
* \param[out] optimized_coefficients the resultant recomputed transformation
*/
void
optimizeModelCoefficients (const Indices &inliers,
const Eigen::VectorXf &model_coefficients,
Eigen::VectorXf &optimized_coefficients) const override;
void
projectPoints (const Indices &,
const Eigen::VectorXf &,
PointCloud &, bool = true) const override
{
};
bool
doSamplesVerifyModel (const std::set<index_t> &,
const Eigen::VectorXf &,
const double) const override
{
return (false);
}
/** \brief Return a unique id for this model (SACMODEL_REGISTRATION). */
inline pcl::SacModel
getModelType () const override { return (SACMODEL_REGISTRATION); }
protected:
using SampleConsensusModel<PointT>::sample_size_;
using SampleConsensusModel<PointT>::model_size_;
/** \brief Check if a sample of indices results in a good sample of points
* indices.
* \param[in] samples the resultant index samples
*/
bool
isSampleGood (const Indices &samples) const override;
/** \brief Computes an "optimal" sample distance threshold based on the
* principal directions of the input cloud.
* \param[in] cloud the const boost shared pointer to a PointCloud message
*/
inline void
computeSampleDistanceThreshold (const PointCloudConstPtr &cloud)
{
// Compute the principal directions via PCA
Eigen::Vector4f xyz_centroid;
Eigen::Matrix3f covariance_matrix = Eigen::Matrix3f::Zero ();
computeMeanAndCovarianceMatrix (*cloud, covariance_matrix, xyz_centroid);
// Check if the covariance matrix is finite or not.
for (int i = 0; i < 3; ++i)
for (int j = 0; j < 3; ++j)
if (!std::isfinite (covariance_matrix.coeffRef (i, j)))
PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n");
Eigen::Vector3f eigen_values;
pcl::eigen33 (covariance_matrix, eigen_values);
// Compute the distance threshold for sample selection
sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0;
sample_dist_thresh_ *= sample_dist_thresh_;
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_);
}
/** \brief Computes an "optimal" sample distance threshold based on the
* principal directions of the input cloud.
* \param[in] cloud the const boost shared pointer to a PointCloud message
* \param indices
*/
inline void
computeSampleDistanceThreshold (const PointCloudConstPtr &cloud,
const Indices &indices)
{
// Compute the principal directions via PCA
Eigen::Vector4f xyz_centroid;
Eigen::Matrix3f covariance_matrix;
computeMeanAndCovarianceMatrix (*cloud, indices, covariance_matrix, xyz_centroid);
// Check if the covariance matrix is finite or not.
for (int i = 0; i < 3; ++i)
for (int j = 0; j < 3; ++j)
if (!std::isfinite (covariance_matrix.coeffRef (i, j)))
PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n");
Eigen::Vector3f eigen_values;
pcl::eigen33 (covariance_matrix, eigen_values);
// Compute the distance threshold for sample selection
sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0;
sample_dist_thresh_ *= sample_dist_thresh_;
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_);
}
/** \brief Estimate a rigid transformation between a source and a target point cloud using an SVD closed-form
* solution of absolute orientation using unit quaternions
* \param[in] cloud_src the source point cloud dataset
* \param[in] indices_src the vector of indices describing the points of interest in cloud_src
* \param[in] cloud_tgt the target point cloud dataset
* \param[in] indices_tgt the vector of indices describing the correspondences of the interest points from
* indices_src
* \param[out] transform the resultant transformation matrix (as model coefficients)
*
* This method is an implementation of: Horn, B. Closed-Form Solution of Absolute Orientation Using Unit Quaternions, JOSA A, Vol. 4, No. 4, 1987
*/
void
estimateRigidTransformationSVD (const pcl::PointCloud<PointT> &cloud_src,
const Indices &indices_src,
const pcl::PointCloud<PointT> &cloud_tgt,
const Indices &indices_tgt,
Eigen::VectorXf &transform) const;
/** \brief Compute mappings between original indices of the input_/target_ clouds. */
void
computeOriginalIndexMapping ()
{
if (!indices_tgt_)
{
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_tgt_ is null.\n");
return;
}
if (!indices_)
{
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is null.\n");
return;
}
if (indices_->empty ())
{
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is empty.\n");
return;
}
if (indices_->size () != indices_tgt_->size ())
{
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ and indices_tgt_ are not the same size (%zu vs %zu).\n",
indices_->size (), indices_tgt_->size ());
return;
}
for (std::size_t i = 0; i < indices_->size (); ++i)
correspondences_[(*indices_)[i]] = (*indices_tgt_)[i];
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Successfully computed mapping.\n");
}
/** \brief A boost shared pointer to the target point cloud data array. */
PointCloudConstPtr target_;
/** \brief A pointer to the vector of target point indices to use. */
IndicesPtr indices_tgt_;
/** \brief Given the index in the original point cloud, give the matching original index in the target cloud */
std::map<index_t, index_t> correspondences_;
/** \brief Internal distance threshold used for the sample selection step. */
double sample_dist_thresh_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
}
#include <pcl/sample_consensus/impl/sac_model_registration.hpp>